410 research outputs found

    Partition-based differentially private synthetic data generation

    Full text link
    Private synthetic data sharing is preferred as it keeps the distribution and nuances of original data compared to summary statistics. The state-of-the-art methods adopt a select-measure-generate paradigm, but measuring large domain marginals still results in much error and allocating privacy budget iteratively is still difficult. To address these issues, our method employs a partition-based approach that effectively reduces errors and improves the quality of synthetic data, even with a limited privacy budget. Results from our experiments demonstrate the superiority of our method over existing approaches. The synthetic data produced using our approach exhibits improved quality and utility, making it a preferable choice for private synthetic data sharing

    Sensitivity estimation for differentially private query processing

    Full text link
    Differential privacy has become a popular privacy-preserving method in data analysis, query processing, and machine learning, which adds noise to the query result to avoid leaking privacy. Sensitivity, or the maximum impact of deleting or inserting a tuple on query results, determines the amount of noise added. Computing the sensitivity of some simple queries such as counting query is easy, however, computing the sensitivity of complex queries containing join operations is challenging. Global sensitivity of such a query is unboundedly large, which corrupts the accuracy of the query answer. Elastic sensitivity and residual sensitivity offer upper bounds of local sensitivity to reduce the noise, but they suffer from either low accuracy or high computational overhead. We propose two fast query sensitivity estimation methods based on sampling and sketch respectively, offering competitive accuracy and higher efficiency compared to the state-of-the-art methods

    LIO-GVM: an Accurate, Tightly-Coupled Lidar-Inertial Odometry with Gaussian Voxel Map

    Full text link
    This letter presents an accurate and robust Lidar Inertial Odometry framework. We fuse LiDAR scans with IMU data using a tightly-coupled iterative error state Kalman filter for robust and fast localization. To achieve robust correspondence matching, we represent the points as a set of Gaussian distributions and evaluate the divergence in variance for outlier rejection. Based on the fitted distributions, a new residual metric is proposed for the filter-based Lidar inertial odometry, which demonstrates an improvement from merely quantifying distance to incorporating variance disparity, further enriching the comprehensiveness and accuracy of the residual metric. Due to the strategic design of the residual metric, we propose a simple yet effective voxel-solely mapping scheme, which only necessities the maintenance of one centroid and one covariance matrix for each voxel. Experiments on different datasets demonstrate the robustness and accuracy of our framework for various data inputs and environments. To the benefit of the robotics society, we open source the code at https://github.com/Ji1Xingyu/lio_gvm

    Physiological and visible injury responses in different growth stages of winter wheat to ozone stress and the protection of spermidine

    Get PDF
    AbstractThe open top chamber (OTC) method was used in a farmland to study the influence of different levels of O3 concentrations (40 ppb, 80 ppb and 120 ppb) on the enzymatic activity and metabolite contents of the antioxidation system of the winter wheat leaves during the jointing, heading and milk stage. The protective effect of exogenous spermidine (Spd) against the antioxidation of winter wheat under the O3 stress was investigated. With the increasing O3 concentrations and fumigation time, the injuries of the winter wheat leaves were observed to be more serious. For instance, when the O3 concentration reached 120 ppb, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and nitrate reductase (NR) in the jointing stage decreased by 50.3%, 64.9%, 75.5% and 92.9%, respectively; peroxidase (POD) and glutathione reductase (GR) increased by 45.1% and 80.5%, respectively; the contents of malondialdehyde (MDA), ascorbic acid (AsA) and reduced glutathione (GSH) increased by 314.3%, 8.4% and 31.7%, respectively; and the soluble protein (SP) content decreased by 47.5%. The O3 stress also had significant impact on the contents of proline (Pro), NO3––N and NH4+–N of the winter wheat leaves. During the heading stage, when the O3 concentration was 40 ppb and 80 ppb, the content of Pro was 163.9% and 173.2% higher than that in the control group, respectively. But under 120 ppb, it was decreased by 42.4%. Exogenous application of Spd increased the activities of SOD, POD, CAT, APX and GR, as well as the contents of GSH and SP, but decreased the contents of MDA and AsA. This indicates that Spd is an effective antioxidant to relieve the O3 stress on winter wheat leaves, thereby might be applicable to protect winter wheat from the harm of O3

    Robust model of fresh jujube soluble solids content with near-infrared (NIR) spectroscopy

    Get PDF
    A robust partial least square (PLS) calibration model with high accuracy and stability was established for the measurement of soluble solids content (SSC) of fresh jujube using near-infrared (NIR) spectroscopytechnique. Fresh jujube samples were collected in different areas of Taigu and Taiyuan cities, central China in 2008 and 2009. A partial least squares (PLS) calibration model was established based on the NIR spectra of 70 fresh jujube samples collected in 2008. A good calibration result was obtained with correlation coefficient (Rc) of 0.9530 and the root mean square error of calibration (RMSEC) of 0.3951 °Brix. Another PLS calibration model was established based on the NIR spectral of 180 samples collected in 2009; it resulted in the Rc of 0.8536 and the RMSEC of 1.1410 °Brix. It could be seen that the accuracy of established PLS models were different when samples harvested in different years were used for the model calibration. In order to improve the accuracy and robustness of model, different numbers (5, 10, 15, 20, 30 and 40) of samples harvested in 2008 were added to the calibration sample set of the model with samples harvested in 2009, respectively. The established PLS models obtained Rc with the range of 0.8846 to 0.8893 and RMSEC with the range of 1.0248 to 0.9645 °Brix. The obtained results werebetter than the result of the model which was established only with samples harvested in 2009. Moreover, the models established using different numbers of added samples had similar results. Therefore, it was concluded that adding samples from another harvest year could improve the accuracy and robustness of the model for SSC prediction of fresh jujube. The overall results proved that the consideration of samples from different harvest places and years would be useful for establishing an accuracy and robustness spectral model.Keywords: Near-infrared (NIR) spectroscopy, Huping jujube, soluble solids content (SSC), partial least squares (PLS), accuracy, stabilit

    Outram: One-shot Global Localization via Triangulated Scene Graph and Global Outlier Pruning

    Full text link
    One-shot LiDAR localization refers to the ability to estimate the robot pose from one single point cloud, which yields significant advantages in initialization and relocalization processes. In the point cloud domain, the topic has been extensively studied as a global descriptor retrieval (i.e., loop closure detection) and pose refinement (i.e., point cloud registration) problem both in isolation or combined. However, few have explicitly considered the relationship between candidate retrieval and correspondence generation in pose estimation, leaving them brittle to substructure ambiguities. To this end, we propose a hierarchical one-shot localization algorithm called Outram that leverages substructures of 3D scene graphs for locally consistent correspondence searching and global substructure-wise outlier pruning. Such a hierarchical process couples the feature retrieval and the correspondence extraction to resolve the substructure ambiguities by conducting a local-to-global consistency refinement. We demonstrate the capability of Outram in a variety of scenarios in multiple large-scale outdoor datasets. Our implementation is open-sourced: https://github.com/Pamphlett/Outram.Comment: 8 pages, 5 figure

    Experimental and Numerical Investigation on the Irregularity of Carbonation Depth of Concrete Under Supercritical Condition

    Get PDF
    The heterogeneity of a cement-based material results in a random spatial distribution of carbonation depth, which may significantly affect the mechanical properties and durability of the material. Currently, there is a lack of both experimental and numerical investigations aiming at a statistical understanding of this important phenomenon. This paper presents both experimental and numerical supercritical carbonation test results of concrete blocks. The random fields of porosity and two-dimension random aggregate model of concrete were proposed for the simulation. The carbonation depths are measured and distributed along the carbonation boundary by the proposed rapid image processing technique, which are then statistically studied. The study has shown that considering the random distribution of coarse aggregates and using a random field of porosity with due consideration of spatial correlation and variance, the irregularity of carbonation depth can be realistically captured by the numerical model. Overall the methodology adopted in the paper can provide a foundation for future investigations on probability analysis of carbonation depth and other similar work based on multi-scale and –physics modelling

    Efficacy and Safety of Ligation Combined With Sclerotherapy for Patients With Acute Esophageal Variceal Bleeding in Cirrhosis: A Meta-Analysis

    Get PDF
    Objective: To evaluate the efficacy and safety of endoscopic variceal ligation + endoscopic injection sclerotherapy (EVL+EIS) to control acute variceal bleeding (AVB).Methods: Online databases, including Web of Science, PubMed, the Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) disc, VIP, and Wanfang, were searched to identify the studies comparing the differences between EVB+EIS and EVB, EIS from the inception of the databases up to December 30, 2020. STATA 13.0 was used for the meta-analysis.Results: A total of eight studies involving 595 patients (317 patients in the EVL group and 278 patients in the EVL+EIS group) were included. The results of the meta-analysis did not reveal any statistically significant differences in the efficacy of acute bleeding control (P = 0.981), overall rebleeding (P = 0.415), variceal eradication (P = 0.960), and overall mortality (P = 0.314), but a significant difference was noted in the overall complications (P = 0.01).Conclusion: EVL is superior to the combination of EVL and EIS in safety, while no statistically significant differences were detected in efficacy. Further studies should be designed with a large sample size, multiple centers, and randomized controlled trials to assess both clinical interventions

    Performance of the High-Strength Self-Stressing and Self-Compacting Concrete-Filled Steel Tube Columns Subjected to the Uniaxial Compression

    Get PDF
    To improve the compactness of concrete and prevent the debonding between steel tube and concrete core, a high-strength self-stressing and self-compacting concrete-filled steel tube (HSS-CFST) column is introduced. This paper deals with an experimental study on the uniaxial compression of HSS-CFST. A total of 51 specimens subjected to axial compression were investigated. Important variables, including self-stress level, concrete strength, tube thickness, and length-to-diameter ratio, were studied. The failure modes, ultimate bearing capacity, and post-peak ductility were analyzed. The results showed that the use of HSS concrete in CFST yielded a better uniaxial compression performance in comparison with the conventional CFST specimens. An increase of 12.4% in ultimate bearing capacity was observed for an HSS-CFST specimen having a self-stress of 5 MPa. The improvement becomes more pronounced as the length-to-diameter ratio increases. Besides, increasing concrete strength can also contribute significantly to the ultimate bearing capacity, while improvement on the post-peak ductility is not obvious. Furthermore, a numerical analysis considering the self-stressing was carried out, which provided good agreement between the experimental results. Finally, predictive equations specially to calculate the ultimate bearing capacity of HSS-CFST columns were proposed and then validated by the experimental results
    • 

    corecore