16 research outputs found
Evidence for common short natural trans sense-antisense pairing between transcripts from protein coding genes
A computational prediction of human coding RNA trans short sense-antisense pairs suggests that mRNA regulation by other coding transcripts might be a common occurrence
A Rice NBS-ARC Gene Conferring Quantitative Resistance to Bacterial Blight Is Regulated by a Pathogen Effector-Inducible miRNA
The bacterium Xanthomonas oryzae pv. Otyzae (Xoo) causes blight in rice worldwide, resulting in significant crop loss. However, no gene underlying a quantitative trait locus (QTL) for resistance against Xoo has been cloned yet. Here, we report the map-based cloning of a QTL, in which the NBS8R gene confers quantitative resistance to Xoo. NBS8R encodes an NB-ARC protein, which is involved in pathogen/microbe-associated molecular pattern-triggered immunity and whose expression is regulated by non-TAL effector XopQ-inducible Osa-miR1876 through DNA methylation. Sequence analysis of NBS8R in wild rice species and rice cultivars suggests that the Osa-miR1876 binding sites in the 5' UTR of NBS8R are inserted by chance and have undergone variations with Osa-miR1876 throughout evolution. The interaction between NBS8R and XopQ-inducible Osa-miR1876 is partially in keeping with the zigzag model, revealing that quantitative genes may also follow this model to control the innate immune response or basal disease resistance, and may prove valuable in utilizing the existing landraces that harbor the NBS8R gene but with no Osa-miR1876 binding site in rice breeding for bacterial blight resistance
Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)
Abstract Background Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors which contain a conserved C2-C2-type zinc finger domain, are involved in many fundamental processes. In the Arabidopsis photoperiod response pathway, CDF (CYCLING DOF FACTOR) proteins have a primary role as acting via transcriptional repression of the direct FLOWERING LOCUS T (FT) activator CONSTANS (CO). Our previous study indicated that one of CDF homologs, OsDOf12, was involved in photoperiodic flowering. However, the functional characterization of other rice CDF like genes is still in progress. Here, we characterized the function of OsDof4 in rice. Results Phylogenic analysis indicated that OsDof4 is closely clustered into the same subgroup with CDFs and OsDof12. The subcellular localization experiment and transcriptional activity assay suggested that OsDof4 may function as a transcription factor. The diurnal expression pattern indicated that OsDof4 was regulated by endogenous circadian clock. Overexpression of OsDof4 led to earlier flowering under natural long-day field conditions (NLDs) and late flowering under natural short-day field conditions (NSDs), respectively. We compared the expression level of key floral genes in vector line and OsDof4-ox lines grown under long-day conditions (LDs) and short-day conditions (SDs). Real-time q-PCR results demonstrated that under LDs, Hd3a, RFT1 and Ehd1 were up-regulated whereas under SDs they were down-regulated. Hd1 was down-regulated at dusk period independent of photoperiods. Conclusions Taken these results together, we may speculate that the abnormal flowering responses in OsDof4-ox plants under LDs and SDs might be mediated by Ehd1 and Hd1
Additional file 2: Figure S1. of Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)
OsDof4 expression levels in WT, vector line and OsDof4-ox lines. Leaf blades from plants before heading stage were collected for real-time PCR. Values are means ± SE (n = 3). Error bar indicates SE. (TIFF 1080 kb
Additional file 1: Table S1. of Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)
The primers sequences used in this study. (DOCX 19Â kb