121 research outputs found
Relaxation schemes for Chebyshev spectral multigrid methods
Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given
Reviewing the thermo-chemical recycling of waste polyurethane foam
The worldwide production of polymeric foam materials is growing due to their advantageous properties of light weight, high thermal insulation, good strength, resistance and rigidity. Society creates ever increasing amounts of poly-urethane (PU) waste. A major part of this waste can be recycled or recovered in order to be put into further use. The PU industry is committed to assist and play its part in the process. The recycling and recovery of PU foam cover a range of mechanical, physical, chemical and thermo-chemical processes. In addition to the well- documented mechanical and chemical processing options, thermo-chemical treatments are important either as ultimate disposal (incineration) or towards feedstock recovery, leading to different products according to the thermal conditions of the treatment. The review focuses on these thermo-chemical and thermal processes. As far as pyrolysis is concerned, TDI and mostly polyol can be recovered. The highest recovery yields of TDI and polyols occur at low temperatures (150–200 ◦C). It is however clear from literature that pure feedstock will not be produced, and that a further upgrading of the condensate will be needed, together with a thermal or alternative treatment of the non-condensables. Gasification towards syngas has been studied on a larger and industrial scale. Its application would need the location of the PU treatment plant close to a chemical plant, if the syngas is to be valorized or considered in conjunction with a gas-fired CHP plant. Incineration has been studied mostly in a co- firing scheme. Potentially toxic emissions from PU combustion can be catered for by the common flue gas cleaning behind the incineration itself, making this solution less evident as a stand-alone option: the combination with other wastes (such as municipal solid waste) in MSWI′s seems the indicated route to go
COVID-19 causes record decline in global CO2 emissions
The considerable cessation of human activities during the COVID-19 pandemic
has affected global energy use and CO2 emissions. Here we show the
unprecedented decrease in global fossil CO2 emissions from January to April
2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when
compared with the period last year. In addition other emerging estimates of
COVID impacts based on monthly energy supply or estimated parameters, this
study contributes to another step that constructed the near-real-time daily CO2
emission inventories based on activity from power generation (for 29
countries), industry (for 73 countries), road transportation (for 406 cities),
aviation and maritime transportation and commercial and residential sectors
emissions (for 206 countries). The estimates distinguished the decline of CO2
due to COVID-19 from the daily, weekly and seasonal variations as well as the
holiday events. The COVID-related decreases in CO2 emissions in road
transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to
2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%),
residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2,
-15%). Regionally, decreases in China were the largest and earliest (234.5 Mt
CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S.
(162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional
nitrogen oxides concentrations observed by satellites and ground-based
networks, but the calculated signal of emissions decreases (about 1Gt CO2) will
have little impacts (less than 0.13ppm by April 30, 2020) on the overserved
global CO2 concertation. However, with observed fast CO2 recovery in China and
partial re-opening globally, our findings suggest the longer-term effects on
CO2 emissions are unknown and should be carefully monitored using multiple
measures
Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study
Background: Health effects of air pollution on diabetes have been scarcely studied in developing countries. We aimed to explore the associations of long-term exposure to ambient particulate matter (PM) and gaseous pollutants with diabetes prevalence and glucose-homoeostasis markers in China. Methods: Between April 1 and Dec 31, 2009, we recruited a total of 15 477 participants aged 18–74 years using a random number generator and a four-staged, stratified and cluster sampling strategy from a large cross-sectional study (the 33 Communities Chinese Health Study) from three cities in Liaoning province, northeastern China. Fasting and 2 h insulin and glucose concentrations and the homoeostasis model assessment of insulin resistance index and β-cell function were used as glucose-homoeostasis markers. Diabetes was defined according to the American Diabetes Association's recommendations. We calculated exposure to air pollutants using data from monitoring stations (PM with an aerodynamic diameter of 10 μm or less [PM10], sulphur dioxide, nitrogen dioxide, and ozone) and a spatial statistical model (PM with an aerodynamic diameter of 1 μm or less [PM1] and 2·5 μm or less [PM2·5]). We used two-level logistic regression and linear regression analyses to assess associations between exposure and outcomes, controlling for confounders. Findings: All the studied pollutants were significantly associated with increased diabetes prevalence (eg, the adjusted odds ratios associated with an increase in IQR for PM1, PM2·5, and PM10 were 1·13, 95% CI 1·04–1·22; 1·14, 1·03–1·25; and 1·20, 1·12–1·28, respectively). These air pollutants were also associated with higher concentrations of fasting glucose (0·04–0·09 mmol/L), 2 h glucose (0·10–0·19 mmol/L), and 2 h insulin (0·70–2·74 μU/L). No association was observed for the remaining biomarkers. Stratified analyses indicated greater effects on the individuals who were younger (<50 years) or overweight or obese. Interpretation: Long-term exposure to air pollution was associated with increased risk of diabetes in a Chinese population, particularly in individuals who were younger or overweight or obese. Funding: The National Key Research and Development Program of China, the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, the Guangdong Province Natural Science Foundation, the Career Development Fellowship of Australian National Health and Medical Research Council, and the Early Career Fellowship of Australian National Health and Medical Research Council
Near-real-time monitoring of global COâ‚‚ emissions reveals the effects of the COVID-19 pandemic
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
- …