21 research outputs found
mixiTUI:A Tangible Sequencer for Electronic Live Performances
With the rise of crowdsourcing and mobile crowdsensing techniques, a large
number of crowdsourcing applications or platforms (CAP) have appeared. In the
mean time, CAP-related models and frameworks based on different research
hypotheses are rapidly emerging, and they usually address specific issues from
a certain perspective. Due to different settings and conditions, different
models are not compatible with each other. However, CAP urgently needs to
combine these techniques to form a unified framework. In addition, these models
needs to be learned and updated online with the extension of crowdsourced data
and task types, thus requiring a unified architecture that integrates lifelong
learning concepts and breaks down the barriers between different modules. This
paper draws on the idea of ubiquitous operating systems and proposes a novel OS
(CrowdOS), which is an abstract software layer running between native OS and
application layer. In particular, based on an in-depth analysis of the complex
crowd environment and diverse characteristics of heterogeneous tasks, we
construct the OS kernel and three core frameworks including Task Resolution and
Assignment Framework (TRAF), Integrated Resource Management (IRM), and Task
Result quality Optimization (TRO). In addition, we validate the usability of
CrowdOS, module correctness and development efficiency. Our evaluation further
reveals TRO brings enormous improvement in efficiency and a reduction in energy
consumption
A Meta-analysis of Major Complications between Traditional Pacemakers and Leadless Pacemakers
Objectives: We aim to compare the major complications between leadless pacemakers and traditional pacemakers. Background: Leadless pacemakers, which are increasingly used in clinical practice, have several advantages compared with traditional pacemakers in avoiding pocket- and lead-related complications. However, the clinical effect of leadless pacemakers remains controversial. Methods: PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the CNKI database, and the Wanfang database were searched from July 2013 to December 2019. Studies comparing leadless pacemakers and traditional pacemakers were included. The primary end point was major complications. The secondary end points were cardiac perforation/pericardial effusion, device revision or extraction, loss of device function, and death. Results: Six studies fulfilled the inclusion criteria. Only four of the six studies reported data on major complications. Leadless pacemakers were associated with a lower incidence of major complications (risk ratio 0.33, 95% confidence interval 0.25–0.44, P<0.00001, I 2 =49%). We extracted data on cardiac perforation/pericardial effusion, device revision or extraction, loss of device function, and death from six studies. Our meta-analysis showed that leadless pacemakers have a higher risk of cardiac perforation or pericardial effusion (risk ratio 4.28, 95% confidence interval 1.66–11.08, P=0.003, I 2 =0%). No statistically significant differences were found for mortality, device revision or extraction, and loss of device function. Conclusion: Compared with traditional pacemakers, leadless pacemakers have a significantly decreased risk of major complications, but have a higher risk of cardiac perforation or pericardial effusion
Anti-thrombosis Effects and Mechanisms by Xueshuantong Capsule Under Different Flow Conditions
Xueshuantong capsule (XST) is a patented traditional Chinese medicine used for the prevention and treatment of thrombosis. The molecular mechanism of anti-thrombotic effect of XST was investigated through the cross-talk among the platelets/leukocytes, endothelial cells (ECs), and flow shear stress. The Bioflux 1000 system was used to generate two levels of shear stress conditions: 0.1 and 0.9 Pa. Bioflux Metamorph microscopic imaging system was used to analyze the adhesion cell numbers. Protein expressions were detected by western blotting and flow cytometry. The flow-cytometry results showed that under 0.1 Pa flow, XST decreased ADP induced platelets CD62p surface expression in a concentration-dependent manner. Under 0.9 Pa flow, XST at a concentration of 0.15 gâ‹…L-1 reduced the platelets activation by 29.5%, and aspirin (ASA) showed no inhibitory effects. XST showed similar efficiency on monocytes adhesion both under 0.1 and 0.9 Pa flow conditions, and the inhibition rate was 30.2 and 28.3%, respectively. Under 0.9 Pa flow, the anti-adhesive effects of XST might be associated with the suppression of VE-cadherin and Cx43 in HUVECs. Blood flow not only acts as a drug transporter, but also exerts its effects to influence the pharmacodynamics of XST. Effects of XST on inhibiting platelets activation and suppressing platelets/leukocytes adhesion to injured ECs are not only concentration-dependent, but also shear stress-dependent. The mechanic forces combined with traditional Chinese medicine may be used as a precise treatment for cardiovascular diseases
Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling
Co- and Ni-free disordered rocksalt cathodes utilize oxygen redox to increase the energy density of lithium-ion batteries, but it is challenging to achieve good cycle life at high voltages >4.5 V (versus Li/Li+). Here we report a family of Li-excess Mn-rich cathodes that integrates rocksalt- and polyanion-type structures. Following design rules for cation filling and ordering, we demonstrate the bulk incorporation of polyanion groups into the rocksalt lattice. This integration bridges the two primary families of lithium-ion battery cathodes—layered/spinel and phosphate oxides—dramatically enhancing the cycling stability of disordered rocksalt cathodes with 4.8 V upper cut-off voltage. The cathode exhibits high gravimetric energy densities above 1,100 Wh kg−1 and >70% retention over 100 cycles. This study opens up a broad compositional space for developing battery cathodes using earth-abundant elements such as Mn and Fe
SegRap2023: A Benchmark of Organs-at-Risk and Gross Tumor Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma
Radiation therapy is a primary and effective NasoPharyngeal Carcinoma (NPC)
treatment strategy. The precise delineation of Gross Tumor Volumes (GTVs) and
Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting
patient prognosis. Previously, the delineation of GTVs and OARs was performed
by experienced radiation oncologists. Recently, deep learning has achieved
promising results in many medical image segmentation tasks. However, for NPC
OARs and GTVs segmentation, few public datasets are available for model
development and evaluation. To alleviate this problem, the SegRap2023 challenge
was organized in conjunction with MICCAI2023 and presented a large-scale
benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans
from 200 NPC patients, each with a pair of pre-aligned non-contrast and
contrast-enhanced CT scans. The challenge's goal was to segment 45 OARs and 2
GTVs from the paired CT scans. In this paper, we detail the challenge and
analyze the solutions of all participants. The average Dice similarity
coefficient scores for all submissions ranged from 76.68\% to 86.70\%, and
70.42\% to 73.44\% for OARs and GTVs, respectively. We conclude that the
segmentation of large-size OARs is well-addressed, and more efforts are needed
for GTVs and small-size or thin-structure OARs. The benchmark will remain
publicly available here: https://segrap2023.grand-challenge.orgComment: A challenge report of SegRap2023 (organized in conjunction with
MICCAI2023
Walnut Oil Prevents Scopolamine-Induced Memory Dysfunction in a Mouse Model
For thousands of years, it has been widely believed that walnut is a kind of nut that has benefits for the human body. Walnut oil, accounting for about 70% of walnut, mainly consists of polyunsaturated fatty acids. To investigate the effect of walnut oil on memory impairment in mice, scopolamine (3 mg/kg body weight/d) was used to establish the animal model during Morris Water Maze (MWM) tests. Walnut oil was administrated orally at 10 mL/kg body weight/d for 8 consecutive weeks. The results showed that walnut oil treatment ameliorated the behavior of the memory-impaired mice in the MWM test. Additionally, walnut oil obviously inhibited acetylcholinesterase activity (1.26 ± 0.12 U/mg prot) (p = 0.013) and increased choline acetyltransferase activity (129.75 ± 6.76 U/mg tissue wet weight) in the brains of scopolamine-treated mice (p = 0.024), suggesting that walnut oil could prevent cholinergic function damage in mice brains. Furthermore, walnut oil remarkably prevented the decrease in total superoxide dismutase activity (93.30 ± 5.50 U/mg prot) (p = 0.006) and glutathione content (110.45 ± 17.70 mg/g prot) (p = 0.047) and the increase of malondialdehyde content (13.79 ± 0.96 nmol/mg prot) (p = 0.001) in the brain of scopolamine-treated mice, indicating that walnut oil could inhibit oxidative stress in the brain of mice. Furthermore, walnut oil prevented histological changes of neurons in hippocampal CA1 and CA3 regions induced by scopolamine. These findings indicate that walnut oil could prevent memory impairment in mice, which might be a potential way for the prevention of memory dysfunctions