112 research outputs found

    Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity

    Get PDF
    Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance

    A Mott insulator continuously connected to iron pnictide superconductors

    Full text link
    Iron-based superconductivity develops near an antiferromagnetic order and out of a bad metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, and neutron scattering to demonstrate that NaFe1x_{1-x}Cux_xAs near x0.5x\approx 0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behavior persisting above the N\'eel temperature, indicative of a Mott insulator. Upon decreasing xx from 0.50.5, the antiferromagnetic ordered moment continuously decreases, yielding to superconductivity around x=0.05x=0.05. Our discovery of a Mott insulating state in NaFe1x_{1-x}Cux_xAs thus makes it the only known Fe-based material in which superconductivity can be smoothly connected to the Mott insulating state, highlighting the important role of electron correlations in the high-TcT_{\rm c} superconductivity.Comment: in press, Nat. Commun., 4 figures, supplementary information available upon reques

    Phylogenetic analysis of porcine parvoviruses from swine samples in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine parvovirus (PPV) usually causes reproductive failure in sows. The objective of the present study was to analyze the phylogenetic distribution and perform molecular characterization of PPVs isolated in China, as well as to identify two field strains, LZ and JY. The data used in this study contained the available sequences for NS1 and VP2 from GenBank, as well as the two aforementioned Chinese strains.</p> <p>Results</p> <p>Phylogenetic analysis shows that the PPV sequences are divided into four groups. The early Chinese PPV isolates are Group I viruses, and nearly all of the later Chinese PPV isolates are Group II viruses. LZ belongs to group II, whereas the JY strain is a Group III virus. This is the first report on the isolation of a Group III virus in China. The detection of selective pressures on the PPV genome shows that the NS1 and VP2 genes are under purifying selection and positive selection, respectively. Moreover, the amino acids in the VP2 capsid are highly variable because of the positive selection.</p> <p>Conclusions</p> <p>Our study provides new molecular data on PPV strains in China, and emphasizes the importance of etiological studies of PPV in pigs.</p

    Polymorphic genetic characterization of the ORF7 gene of porcine reproductive and respiratory syndrome virus (PRRSV) in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation. The outbreak of a highly pathogenic PRRS in 2006 led us to investigate the extent of PRRSV genetic diversity in China. To this end, we analyzed the Nsp2 and ORF7 gene sequences of 98 Chinese PRRSV isolates.</p> <p>Results</p> <p>Preliminary analysis indicated that highly pathogenic PRRSV strains with a 30-amino acid deletion in the Nsp2 protein are the dominant viruses circulating in China. Further analysis based on ORF7 sequences revealed that all Chinese isolates were divided into 5 subgroups, and that the highly pathogenic PRRSVs were distantly related to the MLV or CH-1R vaccine, raising doubts about the efficacy of these vaccines. The ORF7 sequence data also showed no apparent associations between geographic or temporal origin and heterogeneity of PRRSV in China.</p> <p>Conclusion</p> <p>These findings enhance our knowledge of the genetic characteristics of Chinese PRRSV isolates, and may facilitate the development of effective strategies for monitoring and controlling PRRSV in China.</p

    Retraction Note: Identification of de Novo Mutations in Prenatal Neurodevelopment-Associated Genes in Schizophrenia in Two Han Chinese Patient-Sibling Family-Based Cohorts (Translational Psychiatry, (2020), 10, 1, (307), 10.1038/s41398-020-00987-Z)

    Get PDF
    © 2020, The Author(s). This article1 has been retracted at the request of Authors Xingwang Li and Lin He. After publication, it was realized that approval to use data from the NSFC-NIH Sino-US cooperation project (Project No. 81361120389) was not obtained from the data owners. Authors Dongmei Cao, Xiangning Chen, Lin He, Kenneth Kendler, Xingwang Li, Travis Mize, Chunling Wan and Jain-Shing Wu agree to this retraction. Authors Shan Jiang, Jingchun Chen and Zongming Zhao do not agree to this retraction. Authors Guang He, Peilin Jia, Xiaoqian Jiang, Yimei Lu, Ming Tsuang, Yin-Ying Wang and Daizhan Zhou did not respond to correspondence from the Publisher about this retraction

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore