2,616 research outputs found

    The Bipolar II depression questionnaire: A self-report tool for detecting Bipolar II depression

    Get PDF
    Bipolar II (BP-II) depression is often misdiagnosed as unipolar (UP) depression, resulting in suboptimal treatment. Tools for differentiating between these two types of depression are lacking. This study aimed to develop a simple, self-report screening instrument to help distinguish BP-II depression from UP depressive disorder. A prototype BP-II depression questionnaire (BPIIDQ-P) was constructed following a literature review, panel discussions and a field trial. Consecutively assessed patients with a diagnosis of depressive disorder or BP with depressive episodes completed the BPIIDQ-P at a psychiatric outpatient clinic in Hong Kong between October and December 2013. Data were analyzed using discriminant analysis and logistic regression. Of the 298 subjects recruited, 65 (21.8%) were males and 233 (78.2%) females. There were 112 (37.6%) subjects with BP depression [BP-I = 42 (14.1%), BP-II = 70 (23.5%)] and 182 (62.4%) with UP depression. Based on family history, age at onset, postpartum depression, episodic course, attacks of anxiety, hypersomnia, social phobia and agoraphobia, the 8-item BPIIDQ-8 was constructed. The BPIIDQ-8 differentiated subjects with BP-II from those with UP depression with a sensitivity/specificity of 0.75/0.63 for the whole sample and 0.77/0.72 for a female subgroup with a history of childbirth. The BPIIDQ-8 can differentiate BP-II from UP depression at the secondary care level with satisfactory to good reliability and validity. It has good potential as a screening tool for BP-II depression in primary care settings. Recall bias, the relatively small sample size, and the high proportion of females in the BP-II sample limit the generalization of the results

    Structure of a model TiO2 photocatalytic interface

    Get PDF
    The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis

    CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers

    Get PDF
    Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N-2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of the resonance frequency measurements for the different adsorbed gas molecules are almost identical when the frequency changes are normalized by the molecular weights of the gases. In contrast, the deflection measurements show that only CO2 adsorption induces substantial bending of the MIL53-AAO cantilevers. This selective deflection of the cantilevers is attributed to the strong interactions between CO2 and the hydroxyl groups in MIL-53, which induce structural changes in the MIL-53 layers. Simultaneous measurements of the resonance frequency and the deflection are performed to show that the diffusion of CO2 into the nanoporous MIL-53 layers occurs very rapidly, whereas the binding of CO2 to hydroxyl groups occurs relatively slowly, which indicates that the adsorption of CO2 onto the MIL-53 layers and the desorption of CO2 from the MIL-53 layers are reaction limited.111514Ysciescopu

    Woodpile and diamond structures by optical interference holography

    Full text link
    We report the use of an optical interference holographic setup with a five-beam configuration, consisting of four side beams and one central beam from the same half space, to fabricate woodpile and diamond structures for the use as photonic bandgap materials in which electromagnetic waves are forbidden in the bandgap. By exploiting the advantage of the binarization of the interference pattern, using intensity cut-off, either linear or circular central beam can be used. More importantly, the beam configurations can be easily implemented experimentally as compared to other configurations in which the interfering beams are counter-propagating from both half spaces.Comment: 11 pages, 3 figures, and one tabl

    Size and Shape Dependence of the Electronic Structure of Gold Nanoclusters on TiO2

    Get PDF
    Understanding the mechanism behind the superior catalytic power of single- or few-atom heterogeneous catalysts has become an important topic in surface chemistry. This is particularly the case for gold, with TiO2 being an efficient support. Here we use scanning tunneling microscopy/spectroscopy with theoretical calculations to investigate the adsorption geometry and local electronic structure of several-atom Au clusters on rutile TiO2(110), with the clusters fabricated by controlled manipulation of single atoms. Our study confirms that Au1 and Au2 clusters prefer adsorption at surface O vacancies. Au3 clusters adsorb at O vacancies in a linear-chain configuration parallel to the surface; in the absence of O vacancies they adsorb at Ti5c sites with a structure of a vertically pointing upright triangle. We find that both the electronic structure and cluster–substrate charge transfer depend critically on the cluster size, bonding configuration, and local environment. This suggests the possibility of engineering cluster selectivity for specific catalytic reactions

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin

    Magnetic surface reconstruction in the van der Waals antiferromagnet Fe1+xTe

    Get PDF
    We acknowledge financial support from the EPSRC (EP/R031924/1 and EP/R032130/1) and NIST Center for Neutron Research. C.H. acknowledges support by the Austrian Science Fund (FWF) Project No. P32144-N36 and the VSC4 of the Vienna University of TechnologyFe1+xTe is a two-dimensional van der Waals antiferromagnet that becomes superconducting on anion substitution on the Te site. The properties of the parent phase of Fe1+xTe are sensitive to the amount of interstitial iron situated between the iron-tellurium layers. Fe1+xTe displays collinear magnetic order coexisting with low-temperature metallic resistivity for small concentrations of interstitial iron x and helical magnetic order for large values of x. While this phase diagram has been established through scattering [see, for example, E. E. Rodriguez et al., Phys. Rev. B 84, 064403 (2011); S. Rossler et al., ibid. 84, 174506 (2011)], recent scanning tunneling microscopy measurements [C. Trainer et al., Sci. Adv. 5, eaav3478 (2019)] have observed a different magnetic structure for small interstitial iron concentrations x with a significant canting of the magnetic moments along the crystallographic c axis of θ = 28° ± 3°. In this paper, we revisit themagnetic structure of Fe1.09Te using spherical neutron polarimetry and scanning tunneling microscopy to search for this canting in the bulk phase, and we compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe1.09Te is consistent with collinear in-plane order (θ= 0 with an error of ∼ 5°). Comparison with scanning tunneling microscopy on a series of Fe1+xTe samples reveals that the surface exhibits a magnetic surface reconstruction with a canting angle of the spins of θ = 29.8°. We suggest that this is a consequence of structural relaxation of the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe1+xTe displays different properties at the surface when the symmetry constraints of the bulk are removed.Publisher PDFPeer reviewe

    On the rocking behavior of rigid objects

    Get PDF
    A novel formulation for the rocking motion of a rigid block on a rigid foundation is presented in this work. The traditional piecewise equations are replaced by a single ordinary differential equation. In addition, damping effects are no longer introduced by means of a coefficient of restitution but understood as the presence of impulsive forces. The agreement with the classical formalism is very good for both free rocking regime and harmonic forcing excitation

    Highly stable superhydrophobic surfaces under flow conditions

    Get PDF
    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined. (C) 2015 AIP Publishing LLC.open1166sciescopu

    Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators

    Get PDF
    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4 degrees, 147.2 degrees, 156.3 degrees, and 157.8 degrees, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation. (C) 2015 AIP Publishing LLC.open11119sciescopu
    corecore