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On the Rocking Behavior of Rigid Objects
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Abstract. A novel formulation for the rocking motion of a rigid block on a rigid foundation is
presented in this work. The traditional piecewise equations are replaced by a single ordinary differ-
ential equation. In addition, damping effects are no longer introduced by means of a coefficient of
restitution but understood as the presence of impulsive forces. The agreement with the classical for-
malism is very good for both free rocking regime and harmonic forcing excitation.
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Abbrevations: RM – Rocking Motion

1. Introduction

Rocking Motion (RM) is an oscillation characterized by an instantaneous shift
between centres of rotation when a determined position is reached. At that point, an
impulsive force takes place producing energy loss. The generic example is the case of
a rigid prismatic block resting on a rigid foundation subjected to external earthquake
loading. If friction is high enough to prevent sliding and the earthquake acceleration
exceeds certain limit, the block will undergo rocking motion over its edges.

Although RM has been a subject of interest for researchers over a century, it was
Housner [1] who presented the problem in a modern fashion. In that pioneer work
it was showed that, despite of the apparent simplicity of a single block dynamics, a
non-trivial behaviour was present and a number of unexpected results emerged.

Subsequent authors analysed the behaviour of a block subjected to the action of
different earthquake inputs [2–5], while others focused their works on the stability of
RM dynamics [6–8]. With respect to the latter subject, it has been shown how RM
can become chaotic for some values of the parameters characterizing the system.

All the cited works make use of the formulation introduced by Housner [1] in
terms of two differential equations, being each independent equation for each sign of
the rotation angle. In addition, damping mechanisms are reproduced by a coefficient
of restitution.

Nevertheless, Housner’s piecewise formulation presents two important drawbacks.
First, the theory makes the application of the standard mathematical theorems and
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techniques of the theory of differential equations very difficult. Second, its gener-
alization for a higher number of blocks becomes intractable when the number of
degrees-of-freedom increases [9,10].

The aim of the present contribution is to unify both piecewise equations and
impact mechanisms into a model in which the motion is governed by a single differ-
ential equation.

The organization of the paper is as follows: In Section 2, Housner theory is revis-
ited for comparison and reference. Section 3 introduces the complex formulation for
both free and forced regimes. Finally, in Section 4, the results of the new formulation
are tested with Housner theory.

2. Housner Theory for Planar Rocking Motion

To make the paper self-contained, a brief review for Housner [1] RM is included.
The equations of motion for a rigid rectangular block placed on a rigid base

experiencing a time-dependent acceleration a(τ) (see Figure 1) are obtained from
D’Alembert’s principle [11]

Iθ ′′ −MRa(τ) cos(α∓ θ)±MgR sin(α∓ θ)=0 (1)

where M is the mass, I = (4/3)MR2, the corresponding moment of inertia (defined
with respect to O or O’), g is the acceleration of gravity, and the geometrical parame-
ters and coordinates are defined in Figure (1). The ± sign refers to the domains θ >0
and θ <0 respectively.

Positive angles are defined counter-clockwise and time-differentiated variables are
denoted by an apostrophe.

In eq.(1), a(τ) can represent any earthquake input but, for simplicity purposes,
throughout this work harmonic forcing will be assumed, given by

a(τ)=αgβ cos(�τ +�) (2)

where β and � represent the earthquake amplitude and circular frequency, respec-
tively.

The following non-dimensional variables are now introduced

x= θ/α, t=pτ, ω=�/p, (3)

α

R

2b

2h

o’o

θ

c.m.

Figure 1. Geometry and notation for a rocking rectangular block.
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where p=√
MgR/I . If differentiation with respect to the non-dimensional time t is

referenced by Newton’s notation, equation (1) can be written in the following form

|ẍ|+
(

1
α

)
sin[α(1−|x|)]− sign(x)β cos[α(1−|x|)] cos(ωt+�)=0 (4)

Regarding the impact mechanisms, the piecewise theory assumes a coefficient of
restitution that multiplies the angular velocity when the block passes through the
equilibrium position at x=0. If ẋb and ẋa represent the angular velocities just before
and after the impact respectively, Housner theory [1] states that,

ẋa/ẋb=µ Ka/Kb=µ2 (5)

where µ is the coefficient of restitution and K is the kinetic energy of the block.

3. Complex Formulation

3.1. Free Rocking Motion Without Impact

In this section a Lagrangian function is built from the potential and kinetic energy
expressions. Then, damping and harmonic excitation are included into the model
through generalized forces in the D’Alembert’s equations.

The potential energy of the block depends solely on the absolute value of the
angle θ and reads

U =MgR cos(α−|θ |) (6)

In free rocking motion, under the actions of gravity and damping forces, a symmetry
in the system exists, by which the dynamics are invariant under specular reflections
with respect to a vertical line passing through the centre of rotation (see Figure 2).

The symmetry is equivalent to an invariance with respect to the sign of θ , and, as
a consequence, an associated conserved magnitude exists (Noether’s Theorem [12]).

This fact can be exploited by expressing θ in complex form:

θ = reiψ (7)

−θ θ

Mirror

Figure 2. Dynamical symmetry associated to the sign of θ .
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Here, the sign of θ is only associated with ψ and r equals the absolute value of
θ . Therefore, in a heuristic manner, the following (ψ-independent) kinetic energy can
be proposed

T = I

2
θ ′θ ′∗ (8)

where “∗” means complex conjugate.
The Lagrangian function is built in the usual manner, as L0 =T −U or

L0 = I

2
(r ′2 + r2ψ ′2)−MgR cos(α− r) (9)

This model can be set into direct analogy with either a two-body central problem
in the complex plane or an inverted pendulum mechanism through simple variable
transformations. However, the study of those mechanical analogies is outside the
scope of the present paper.

The mechanical energy of the problem E reads

E= I

2
(r ′2 + r2ψ ′2)+MgR cos(α− r) (10)

As mentioned above, due to the present symmetry, the Lagrangian function does not
depend explicitly on ψ , and the canonical conjugate momentum pψ turns out to be
a well-defined constant quantity:

pψ = ∂L0

∂ψ ′ = Ir2ψ ′ (11)

It is now assumed that pψ will be referenced as l0: pψ ≡ l0
In its present form, the problem is equivalent to that of a single particle with

kinetic energy K= (I/2)r ′2 moving in an effective potential Veff given by:

Veff (r)=
l20

2Ir2
+MgR cos(α− r) (12)

This potential adds an infinite repulsive barrier to U(r), at r=0.
For a given value of energy E the position of the corresponding turning points

rmin and rmax can be obtained by numerically solving the equation E=Veff (r). How-
ever, for small l0 the following (approximate) analytical solution can be derived for
rmin,

rmin = l0√
2I (E−U0)

(13)

where U0 ≡U(r=0)=MgR cos(α).

3.2. Implementations of Impact and Seismic Actions

In much of what has been presented so far, RM has been considered under the
assumption that both impact and seismic actions are neglected. However, until those
interactions are included, no adequate understanding of the problem should be
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expected. Impact terms make the model no longer Hamiltonian, and then, general-
ized forces Qq , accounting for such effects, should be considered. In the present case,
this can be done via de D’Alembert equations:

d
dτ

(
∂L0

∂r ′

)
− ∂L0

∂r
=Qd

r +Qe
r (14a)

d
dτ

(
∂L0

∂ψ ′

)
− ∂L0

∂ψ
=Qd

ψ +Qe
ψ (14b)

Here Qd
r and Qe

r represent the generalized damping and earthquake forces with
respect to the canonical variable r respectively. The same holds for Qd

ψ and Qe
ψ for

ψ .

3.2.1. Impact model. Phase dynamics
Adopting again a heuristic approach, a reasonable form for Qd

r and Qd
ψ is proposed.

Taking into account the symmetry of the problem, it is assumed that

Qd
ψ =0 (15)

Furthermore, the impulsive force is considered vertical and acting only through the
edges O and O’ just at the moment of impact and with a magnitude equal to a half
of the block weight W =Mg (see Figure 3). If the reaction force through an edge
is referenced as F , it must be noticed that this force changes instantaneously in an
amount of W /2 during the impact. This suggests to consider the form of F as:

F =Mg

2
Fδ (16)

being Fδ a Dirac-delta force.
The implementation of such an impulsive force has reported excellent results in a

previous work [13].
On the other hand, since the generalized force with respect to θ (or to its absolute

value r) is equal to the moment of the reaction force F measured from the centres
of rotation O and O’, the expression for Qd

r is simply: Qd
r =2bF , or, equivalently:

Qd
r =MgR sin(α)Fδ (17)

Figure 3. Impulsive forces during impacts.
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In order to obtain the mathematical form of Fδ, two issues should be taken into
account. First, ψ is associated to the sign of θ and, accordingly, ψ ′ is related to the
change of the sign of θ with time. Second, the effect of the impact forces is to reduce
the absolute value of the angular velocity when the change of sign takes place.

The simplest form for a generalized coupling between r ′ and the change of sign
is:

Fδ =σψ ′r ′ (18)

where σ is a constant.

3.2.2. Evaluation of the constant σ
To obtain the value of σ just introduced, the power dissipated by Qd

r is considered.
Taking into account equations (3),(17) and (18) and recalling that the power P, dis-
sipated by a damping force is equal to the product of that force by the velocity: P ≡
dE/dτ =Qd

r r
′

dE
dτ

= r ′Qd
r = Ip2σ(r ′)2 sin(α)ψ ′ (19)

From equations(10–13) it holds that: (r ′)2 = 2(E−Veff )/I and this can be substi-
tuted in equation (19) to give:

dE
E−Veff (r)

=2p2σ sin(α)dψ (20)

This expression must be integrated during an impact. The left-hand-side is integrated
in energies between Eb and Ea (two consecutive impacts), while the right-hand-side
is integrated in the phase ψ .

Since, at the impact, the contribution to the change of energy E=K+Veff due to
Veff is negligible compared to that corresponding to the kinetic energy, dVeff can be
neglected in the numerator of equation (20)

dE
E−Veff (r)

= d(K+Veff )

K
≈ dK
K

(21)

leading after integration to

ln
(
Ka

Kb

)
=2p2σ�ψ sin(α) (22)

Because, it also holds (see appendix, equation (56)) that for l0 → 0, �ψ =π , expres-
sions (22) and (5) lead to

σ = ln(µ)
πp2 sin(α)

(23)

The form of the generalized damping force results in:

Qd
r =

(
ln(µ)I
π

)
ψ ′r ′ (24)
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3.2.3. Implementation of harmonic forcing
When a horizontal force is applied to the block, the symmetry introduced in Sec-

tion 3.1 does not hold any more. The dynamics are no longer invariant under the
change of sign of θ , and, accordingly, l0 becomes, in general, a function of time.

However, for l0 sufficiently small, it will be shown that this variation is negligible.
The effect of the acceleration considered in equation (2) consists on a horizontal

force of magnitude −Ma(τ), applied at centre of mass of the block.

�F =−M �a(τ) (25)

As a consequence, the generalized forces corresponding to the variables r and ψ are

Qe
r =−Ma(τ)∂Xcm

∂r
(26)

Qe
ψ =−Ma(τ)∂Xcm

∂ψ
(27)

being Xcm the horizontal coordinate of the centre of mass measured with respect to
the centre of rotation:

Xcm = sign(θ)R sin(α−|θ |) (28)

As shown in the appendix (see equation (58) and Figure (6)), for l0 small, the sign
of θ can be given by cos(ψ). Therefore, equation (28) renders

Xcm =R cos(ψ) sin(α− r) (29)

which, once substituted in equations (26) and (27), leads to

Qe
r =Ma(τ)R cos(α− r) cos(ψ)

Qe
ψ =Ma(τ)R sin(α− r) sin(ψ) (30)

In the limit l0 →0, ψ only takes the values nπ (n=0,1,2, . . . ) and Qe
ψ vanishes.

Now, the non-dimensional variable χ , equal to |x| and given by: χ≡ (r/α) is intro-
duced. In addition, the Lagrangian function L0 is normalized by the definition: L≡
L0/(Ip

2α2). The new Lagrangian results in

L= 1
2
(χ̇2 +χ2ψ̇2)− 1

α2
cos(α−αχ). (31)

The corresponding normalized D’Alembert forces with respect to χ , considering
equations (2), (24) and (29) render

Qd
χ = (Ip2α)

(
ln(µ)
π

)
ψ̇χ̇ (32a)

Qe
χ = (Ip2α)β cos(ωt+�) cos(α−αχ) cos(ψ) (32b)

Taking into account that;

∂L0

∂r
= (Ip2α)

∂L

∂χ
(33a)

d
dτ

(∂L0

∂r ′
)

= (Ip2α)
d
dt

(∂L
∂χ̇

)
(33b)
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D’Alembert equations hold

χ̈ =χψ̇2 − 1
α

sin(α−αχ)+ ln(µ)
π

χ̇ψ̇+β cos(ωt+�) cos(α−αχ) cos(ψ) (34)

and

d
dt

( ∂L
∂ψ̇

)
=0 (35)

This last equation simply expresses the fact that the quantity l, defined by l≡χ2ψ̇

is a constant of the motion. In fact, l is the non-dimensional analogous of l0; l =
l0/(Ipα

2).
An autonomous system of differential equations can be formed by embedding the

space of variables in a higher dimension, defining:

(χ1, χ2, χ3, χ4)≡ (χ, χ̇,ψ,ωt) (36)

Due to the effect of a finite interaction, the integrator will take certain intermedi-
ate values for the velocity at the impact time. This average results in adding a factor
of 1/2 (for a more detailed discussion, please, see [13]).Therefore, a factor of 2 should
be included in the impulsive term in order to make theoretical and numerical results
compatible.

The final system of equations (where the earthquake phase� assumed to be zero) is

χ̇1 =χ2

χ̇2 = l2

χ3
1

− sin(α−αχ1)

α
+ 2 ln(µ)χ2l

πχ2
1

+β cos(χ4) cos(χ3) cos(α−αχ1)

χ̇3 = l

χ2
1

χ̇4 =ω (37)

4. Comparison with Housner Theory

For small x and α, analytical solutions do exist for equations (4) (see, for instance
[7]). Therefore, it is possible to compare the novel Formulation of equations (37) with
analytical expressions.

For numerical integration of system of equations (37), a 6-th order Runge-Kutta
method has been used, taking into account that:

– The integration step must always be smaller than l. In the computer implementa-
tion, a value of l/10 has been adopted as default.

– The value of r (or its non-dimensional analogous χ ) is lower-bounded by the value
rc (or χc) which corresponds to a minimum of the effective potential Veff .

The value for rc or χc can be obtained by solving:

dVeff (r)

dr

∣∣
r=rc =0 (38)

which leads to the nonlinear equation
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MgR sin(α− rc)=
l20

Ir3
c

(39)

In terms of l and χ , this equation leads to

sin(α−αχ)χ3
c =αl2 (40)

For small values of α and χc, the following approximate value can be obtained

χc≈ l2/3 (41)

Therefore, a reasonable condition for numerical integration of the system of equa-
tions (37) is χ1 ≥ l2/3.

Next, two different examples are used to validate the proposed novel formulations.
The obtained results plot the real part of the non-dimensional angle x versus the
non-dimensional time t , that is (t,Re(x)=χ cos(ψ))), or equivalent, (t, χ1 cos(χ3)).

As a first example, Housner theory for free rocking motion will be compared with
the model for different values of l. Under these conditions, the performance of the
damping term Qd

χ is evaluated. Figure (4) illustrates the results, being clear that con-
vergence to the theoretical solution is obtained upon increasingly lower values of l.
The parameters used for Figure (4) are: α= tg−1(1/4), µ= 0.925 and initial condi-
tions; (χ1(0)=0.5, χ2(0)=0.0, χ3(0)=0.0, χ4(0)=0.0).

The next example validates Qd
χ and an “accurate” value of l = 10−5 was cho-

sen for the calculation. Figure (5) illustrates the perfect agreement between the
theoretical solution and the novel complex formulation. The parameters used now
are: α= tg−1(1/4), µ= 0.925, and initial conditions; (χ1(0)= 0.061, χ2(0)= −0.061,
χ3(0)=0.0, χ4(0)=0.0).

Figure 4. Comparison between Housner theory and complex formulation for different values of l

under free rocking motion. µ=0.925 and α= tg−1(1/4) with initial conditions; (χ1(0)=0.5, χ2(0)=0.0,
χ3(0)=0.0, χ4(0)=0.0).
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Figure 5. Comparison between Housner theory and complex formulation for l=10−5 and parameters:
α= tg−1(1/4), µ=0.925, and initial conditions; (χ1(0)=0.061, χ2(0)=−0.061, χ3(0)=0.0, χ4(0)=0.0).

5. Conclusions

The complex formulation presented in this work unifies both piecewise equations of
motion and impact mechanisms into a single model, in which the dynamics are gov-
erned by a unique differential equation. This approach allows further studies with a
higher number of blocks and using statistical mechanics.

Damping effects are understood by means of a generalized force constructed in
a heuristic manner. This force behaves as a Dirac-delta force, which is in agreement
with the results reported elsewhere [13].

The model proposed can be set in direct analogy with either a two-body cen-
tral problem in the complex plane or an inverted pendulum through simple variable
transformations. The study of these mechanical analogies is outside the scope of the
present paper.

6. Appendix: Dirac-delta Forces and Phase Dynamics

The aim of this appendix is to show that, during an impact, the quantity

fl(r)≡ 1
π

dψ
dr

(42)

behaves as a Dirac-delta function.
The Dirac-delta function is defined in this work by its assigned properties:

∫ b

a

g(x)δ(x−x0)=


g(x0); x0 ∈ (a, b)

1
2g(x0); x0 =a, b

0; elsewhere
(43)
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As commonly assumed, δ(x) will be approximated by a limit sequence of continuous
functions δl(x).

Strictly, it must be recalled that the limit

lim
l→0

δl(x) (44)

does not exist. Nevertheless, δ(x) may be treated consistently in the form (see, for
instance, Arfken, [14])

∫ b

a

δ(x)g(x)dx= lim
l→0

∫ b

a

δl(x)g(x)dx (45)

Selecting a= rmin, one obtains

lim
l→0

∫ b

rmin
δl(r− rmin)g(r)dr= 1

2
g(rmin) (46)

From equations (10–12) and the definition of equation (42), the following expression
is obtained:

fl(r)= l

πr
√

2(E−U)Ir2 − l2
(47)

The key quantity to be computed is:

lim
l→0

∫ b

rmin
fl(r)g(r)dr (48)

being g(r) an arbitrary function and rmin given by equation (13).
Through a change of variable y = r/rmin, and, after some manipulation, the fol-

lowing expression holds

lim
l→0

∫ b

rmin

1

g(yrmin)dy

πy

√(
E−U(yrmin)

E−U0

)
y2 −1

(49)

Calculating the limit (note that b is large, but finite), the result is

g(0)
π

∫ ∞

1

dy

y
√
y2 −1

(50)

This integral can be calculated in the complex plane taking into account that the
integrand has a simple pole at y= 0 and two branch points at y= ±1, giving π/2.
Therefore

lim
l→0

∫ b

rmin
fl(r)g(r)dr= g(0)

2
(51)

Comparing the above expression with equation (45), since rmin and l go simulta-
neously to zero, it is possible to obtain
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lim
l→0

∫ b

0
fl(x)g(x)dx= g(0)

2
(52)

lim
l→0

∫ b

0
δl(x)g(x)dx= g(0)

2
(53)

From this behaviour of fl(x) on the arbitrary function g(x), it results that fl(x) can
be identified with a δ-sequence;

fl(x)≈ δl(x) (54)

and it is justified to assign:

dψ
dτ

=πδl(τ ) (55)

From this equation, the dispersion of the ψ angle at every impact of the block with
the foundation can also be obtained, as

lim
l→0

�ψ=π
∫ ∞

−∞
δ(x)dx=π (56)

By using the property of the Delta function (where the sum is extended over all the
zeros (tj ) of the function x(t), e.g. the times of impact):

δ(x(t))=
∑

j δ(t− tj )
|ẋ(tj )| (57)

and by manipulation of equation (55), one obtains

lim
l→0

ψ(t)=π
∑
j

�(t− tj ) (58)

where d�/dt= δ(t) and �(t) is the Heaviside step function.
This last equation is tested numerically by integration of system of equation (37)

for two values of l, being the results given in Figure (6). Upon decreasing value of l,
excellent results are found for the phase ψ .

Figure 6. Numerical test for the phase ψ in equation (58) for �=10−5 and �=10−2.
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