4,083 research outputs found

    Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila.

    Get PDF
    Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties

    Misalignment factors to affect the fatigue of welded load-carrying joints

    Get PDF
    To assess the effects of misalignment on the weld fatigue, we present experimental fatigue test results of load- carrying cruciform joints which are subjected to axial variable amplitude loading. The welds were produced from steel AH36 grade and fatigue strength improved by high-frequently mechanical impact treatment. We identify several misalignment factors affecting the fatigue by considering the real and reference welded joint geometries. Our methodology includes proposals for the empirical calibration functions and local stress analyses by using the Structural Hot Spot Stress, Effective Notch Stress and Peak Stress Method. Additionally, we apply our methodology to other sixteen data sets which are extracted from the literature for load-carrying cruciform and butt welded joints subjected to constant amplitude loading. Finally, we present the resultant calibration functions with respect to corresponding fatigue test data

    Bound-state third-order optical nonlinearities of germanium nanocrystals embedded in a silica host matrix

    Get PDF
    Embedded germanium nanocrystals (NCs) in a silica host matrix are theoretically analyzed to identify their third-order bound-state nonlinearities. A rigorous atomistic pseudopotential approach is used for determining the electronic structure and the nonlinear optical susceptibilities. This study characterizing the two-photon absorption, nonlinear refractive index, and optical switching parameters reveals the full wavelength dependence from static up to the ultraviolet spectrum, and the size dependence up to a diameter of 3.5 nm. Similar to Si NCs, the intensity-dependent refractive index increases with decreasing NC diameter. On the other hand, Ge NCs possess about an order of magnitude smaller nonlinear susceptibility compared to Si NCs of the same size. It is observed that the two-photon absorption threshold extends beyond the half band-gap value. This enables nonlinear refractive index tunability over a much wider wavelength range free from two-photon absorption. © 2008 The American Physical Society

    Tunable adsorption on carbon nanotubes

    Full text link
    We investigated the adsorption of a single atom, hydrogen and aluminum, on single wall carbon nanotubes from first-principles. The adsorption is exothermic, and the associated binding energy varies inversely as the radius of the zigzag tube. We found that the adsorption of a single atom and related properties can be modified continuously and reversibly by the external radial deformation. The binding energy on the high curvature site of the deformed tube increases with increasing radial deformation. The effects of curvature and radial deformation depend on the chirality of the tube.Comment: To be appear in Physical Review Letter

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989

    Structural and superconducting properties in LaFeAs1-xSbxO1-yFy

    Get PDF
    We report the antimony (Sb) doping effect in a prototype system of iron-based supercon-ductors LaFeAsO1-yFy (y=0, 0.1, 0.15). X-ray powder diffraction indicates that the lattice pa-rameters increase with Sb content within the doping limit. Rietveld structural refinements show that, with the partial substitution of Sb for As, while the thickness of the Fe2As2 layers increases significantly, that of the La2O2 layers shrinks simultaneously. So a negative chemical pressure is indeed "applied" to the superconducting-active Fe2As2 layers, in con-trast to the effect of positive chemical pressure by the phosphorus doping. Electrical resis-tance and magnetic susceptibility measurements indicate that, while the Sb doping hardly influences the SDW anomaly in LaFeAsO, it recovers SDW order for the optimally-doped sample of y=0.1. In the meantime, the superconducting transition temperature can be raised up to 30 K in LaFeAs1-xSbxO1-yFy with x=0.1 and y=0.15. The Sb doping effects are discussed in term of both J1-J2 model and Fermi Surface (FS) nesting scenario.Comment: 7 pages, 4 figures, 1 table. to be published in Science in China Series

    Interplay of Superconductivity and Fermi-Liquid Transport in Rh-Doped CaFe2As2 with Lattice-Collapse Transition

    Full text link
    Ca(Fe1x_{1-x}Rhx_x)2_2As2_2 undergoes successive phase transitions with increasing Rh doping in the TT == 0 limit. The antiferromagnetic-metal phase with orthorhombic structure at 0.00 \le xx \le 0.020 is driven to a superconducting phase with uncollapsed-tetragonal (ucT) structure at 0.020 \le xx \le 0.024; a non-superconducting collapsed-tetragonal (cT) phase takes over at xx \geq 0.024. The breakdown of Fermi-liquid transport is observed in the ucT phase above TcT_{\rm c}. In the adjacent cT phase, Fermi-liquid transport is restored along with a disappearance of superconductivity. This interplay of superconductivity and Fermi-liquid transport suggests the essential role of magnetic fluctuations in the emergence of superconductivity in doped CaFe2_2As2_2.Comment: 11 pages, 4 figure

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor LaO1xFxFeAsLaO_{1-x}F_xFeAs

    Full text link
    We have carried out first principles all-electron calculations of the (001)-projected 2D electron momentum density and the directional Compton profiles along the [100], [001] and [110] directions in the Fe-based superconductor LaOFeAs within the framework of the local density approximation. We identify Fermi surface features in the 2D electron momentum density and the directional Compton profiles, and discuss issues related to the observation of these features via Compton scattering experiments.Comment: 4 pages, 3 figure

    Association between frontal sinus development and persistent metopic suture

    Get PDF
    Background: Frontal sinuses are 2 irregular cavities, placed between 2 lamina of frontal bone. Expansion continues during childhood and reaches full size after puberty. Persistent metopic suture is one of the factors that are related to abnormal frontal sinus development. In this study, we want to discuss about the coexistence of persistent metopic suture and abnormal frontal sinus development using radiological techniques.Materials and methods: In this retrospectively planned study, images of 631 patients were examined, 217 (34.4%) of them were men and 414 (65.6%) of them were women. Brain computed tomography and magnetic resonance images were retrieved from the electronic archive for analysis.Results: In this study, frontal sinus development is categorised as right side atrophy, left side atrophy, bilateral atrophy and bilaterally developed sinuses. The presence of metopic suture was accepted as persistent metopic suture. Frontal sinus atrophy was found in 22.7% and persistent metopic sutures were found in 9.7% of overall.Conclusions: In this study, no significant results were detected that were relatedto the frontal sinus agenesis or dismorphism associated with persistent metopicsuture. We conclude that, although publications propounding metopism thatleads to abnormal frontal sinus development are present in the literature, noreasonable explanation has been mentioned in these articles; and we believe thatthese findings are all incidental.
    corecore