744 research outputs found

    Robust globally divergence-free weak Galerkin finite element methods for natural convection problems

    Get PDF
    This paper proposes and analyzes a class of weak Galerkin (WG) finite element methods for stationary natural convection problems in two and three dimensions. We use piecewise polynomials of degrees k, k-1, and k(k>=1) for the velocity, pressure, and temperature approximations in the interior of elements, respectively, and piecewise polynomials of degrees l, k, l(l = k-1,k) for the numerical traces of velocity, pressure and temperature on the interfaces of elements. The methods yield globally divergence-free velocity solutions. Well-posedness of the discrete scheme is established, optimal a priori error estimates are derived, and an unconditionally convergent iteration algorithm is presented. Numerical experiments confirm the theoretical results and show the robustness of the methods with respect to Rayleigh number.Comment: 32 pages, 13 figure

    ThumbNet: One Thumbnail Image Contains All You Need for Recognition

    Full text link
    Although deep convolutional neural networks (CNNs) have achieved great success in computer vision tasks, its real-world application is still impeded by its voracious demand of computational resources. Current works mostly seek to compress the network by reducing its parameters or parameter-incurred computation, neglecting the influence of the input image on the system complexity. Based on the fact that input images of a CNN contain substantial redundancy, in this paper, we propose a unified framework, dubbed as ThumbNet, to simultaneously accelerate and compress CNN models by enabling them to infer on one thumbnail image. We provide three effective strategies to train ThumbNet. In doing so, ThumbNet learns an inference network that performs equally well on small images as the original-input network on large images. With ThumbNet, not only do we obtain the thumbnail-input inference network that can drastically reduce computation and memory requirements, but also we obtain an image downscaler that can generate thumbnail images for generic classification tasks. Extensive experiments show the effectiveness of ThumbNet, and demonstrate that the thumbnail-input inference network learned by ThumbNet can adequately retain the accuracy of the original-input network even when the input images are downscaled 16 times
    • …
    corecore