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Junju Zhang, Yiyong Han, Benkang Chang and Yihui Yuan  
Institute of Electronic Engineering and Optic-electronic Technology, 

Nanjing University of Science and Technology, Nanjing  
China 

1. Introduction 

Thermal cameras and image intensifiers are common night vision (NV) cameras, which 

enable operations during night and in adverse weather conditions. NV cameras deliver 

monochrome images that are usually hard to interpret and may give rise to visual illusions 

and loss of situational awareness. The two most common NV imaging systems display 

either emitted infrared radiation or reflected low level light (LLL). In this way the different 

imaging modalities give complementary information about the objects or area under 

inspection. Thus, techniques for fusing infrared and LLL images should be employed in 

order to provide a compact representation of the scene with increased interpretation 

capabilities. 

Image fusion can be classified into two types based on pixel-level: pixel-based and region-

based. The pixel-based image fusion is characterized by simplicity and highest popularity. 

Because pixel-based methods fail to take into account the relationship between points and 

points, the fused image with either of them might lose some gray and feature information. 

However, for most image fusion applications, it seems more meaningful to combine objects 

rather than pixels. The region-based fusion, on the contrary, can obtain the best fusion 

results by considering the nature of points in each region altogether. Therefore, region-based 

fusion has advantages over the other two counterparts. At present, region-based methods 

use some segmentation algorithm to separate an original image into different regions, and 

then design different rules for different regions.  

During the last decade, a number of gray fusion algorithms have been proposed, and the 

fusion methods based on the multiscale transform (MST) are the most typical. The 

commonly used MST tools include the Laplacian pyramid and the wavelet transform 

(DWT). In general, due to the perfect properties of the DWT such as multi-resolution, spatial 

and frequency localization, and direction, the DWT-based methods are superior to the 

pyramid-based methods. However, the DWT also has some limitations such as limited 

directions and non-optimal-sparse representation of images. Thus, some artifacts are easily 

introduced into the fused images using the DWT-based methods, which will reduce the 

quality of the resultant image consequently. The Dual-Tree Complex Wavelet Transform 

(DT-CWT) has been introduced by Nick Kingsbury, which has the following properties: 

Approximate shift invariance; Good directional selectivity in 2-D with Gabor-like filters also 
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true for higher dimensionality; Perfect reconstruction using short linear-phase filters; 

Limited redundancy: independent of the number of scales. Therefore, the Dual-Tree 

Complex Wavelet Transform is more suitable for image fusion.  

In the context of NV imaging, a number of color fused-based representations have been 
proposed. A simple mapping of infrared and visual bands into the three components of an 
RGB image can provide an immediate benefit, since the human eye can discriminate several 
thousands of colors but only a few dozens of gray levels. On the other hand, inappropriate 
color mappings may hinder situational awareness due to lack of color constancy. Hence, an 
image fusion method for night vision imagery must result in color images with natural 
appearance and a high degree of similarity with the corresponding natural scenes. To make 
the coloration of false-color images appear more natural, Reinhard recently introduced a 
method that enabled the transfer of colors from one image to another. Subsequently, Toet 
demonstrated that Reinhard’s method could be adapted to transfer the natural color 
characteristics of daylight imagery into multi-band infrared and LLL images. Essentially, 
Toet’s natural color mapping method matches the statistical properties of the NV imagery to 
that of a natural daylight color image. However, this particular color mapping method 
colors the image regardless of scene content, weights all regions of the source image by the 
‘‘global’’ color statistics, and thus the accuracy of the coloring is very much dependent on 
how well the target and source images are matched.  
In this chapter, we present a region-based gray fusion method using the DT-CWT and a 
region-based color fusion method for infrared and LLL images. Segmentation is very 
important because segmentation precision has a great influence on the following fusion 
process. Here, we adopt two segmentation methods: the morphologic mehod and the 
nonlinear diffusion method. In the gray fusion method, the infrared and LLL images are 
decomposed by DT-CWT, the segmentation regions are mapped into each level, and fusion 
is carried out region by region in terms of some fusion rules. The region-based color fusion 
method is based on Toet’s global-coloring framework. 
 

 Input image A

DT-CWT

Input image B

DT-CWT

Region mapping

 into each level

Region Fusion

Region mapping

 into each level

Fusion image

DT-CWT
-1

Combining Region

 Region 

segmentation

 Region 

segmentation

 

Fig. 1. Diagram of the proposed region-based method with DT-CWT 
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2. Image fusion based on region segmentation and complex wavelets 

The region-based fusion method for infrared and LLL images adopts the DT-CWT because 

of its approximate shift invariance and limited redundancy. Diagram of the proposed 

region-based method with DT-CWT is shown in Fig. 1. Segmentation is firstly performed on 

the infrared image and LLL images respectively with top-bottom-hat filtering and the 

threshold method, consequently, the DT-CWT coefficients from the different regions are 

merged separately. Finally the fused image is obtained by performing inverse DT-CWT. 

2.1 Image segmentation using morphology 
The morphologic filters have been proven as powerful methods in the denoising and 

smoothing of image intensities while retaining and enhancing edges. The combination of 

different morphologic filters makes the segmentation flexible. The top-hat transform and the 

bottom-hat transform are all the combination of open operation, close operation and the 

original image. 

The top-hat transform means subtracting a morphologically opened image from the original 

image and it can be used to enhance contrast in an image. The bottom-hat transform means 

subtracting the original image from a morphologically closed version of the image and it can 

be used to find intensity troughs in an image. The formula of the top-hat transform and 

bottom-hat transform are given by respectively 

 ( )topH f f p= − c   (1) 

 ( )bottomH f p f= • −   (2) 

Here f is the original image, " "c and " "• are open operation and close operation, topH and 

bottomH are results of the top-hat transform and bottom-hat transform. Add the original 

image f to the top-hat filtered image topH , and then subtract the bottom-hat filtered 

image bottomH , we can obtain the enhanced image. At the same time, noises of the original 

image f are eliminated. The enhanced image EH is given by 

 E top bottomH H H f= − +    (3) 

Then the threshold method is used to segment the enhanced image EH . We can get the 

binary segmentation image based on this method. Because the physical significance of the 
pixel at the same location of the heterogeneous source images is different, the shapes of 
segmentation regions obtained by the former method are also different. So we must deal the 
segmentation region with the associate methods. The information of segmentation region 
should be added to the associated-segmentation image and is used to guide the fusion rules.  
The following steps are used to generate the associated-segmentation image: 

1. If there is no overlapping area between the region (1)R and the region (2)R , then the 

associated- segmentation image is mapped into two regions, ( ) (1)
1

jR R= , ( ) (2)
2

jR R= ; 

2. If there is some overlapping area between the region (1)R and the region (2)R , then the 

associated- segmentation image is mapped into three regions, ( ) (1) (2)
0

jR R R= ∩ ; 
( ) ( )(1)

1 0
j jR R R= ∩ ; ( ) ( )(2)

2 0
j jR R R= − ; 
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3. If region (1)R  overlaps the region (2)R completely, the associated-segmentation image is 

mapped into the same region, ( ) (1) (2)jR R R= = ; 

4. If one region completely contains the other region, for example, (1) (2)R R⊂ , then the 

associated- segmentation image is mapped into two regions, ( ) (1)
1

jR R= , 
( ) (2) (1)

2
jR R R= − . Here, (1)R is presented a part of one source image, (2)R  is presented a 

part of the other source image. ( )jR is presented a part of associated-segmentation 
image. Fig. 2 is some typical examples of the associated region maps. There are some 
small regions in the associated-segmentation image, and they don’t contain enough 
region information, which will cause false image in the fused image. We may merge 
these small regions using morphological operators.  

 

 
 a)   b)       c) 

Fig. 2. Associated region maps for the fused image. (a) region map1, (b) region map2, (c) 
associated region map 

2.2 Pixel fusion with complex wavelets 
The dual-tree complex wavelet transform (DT-CWT) is a relatively recent enhancement to 

the discrete wavelet transform (DWT), with important additional properties: It is nearly 

shift invariant and directionally selective in two and higher dimensions. It achieves this with 

a redundancy factor of only 2d for d-dimensional signals, which is substantially lower than 

the undecimated DWT. The multidimensional (M-D) DT-CWT is non-separable but is based 

on a computationally efficient, separable filter bank (FB).  

For 2-D signals, we can filter separately along columns and then rows by the way like 1-D. 

Kingsbury figured out in that, to represent fully a real 2-D signal, we must filter with 

complex conjugates of the column and row filters. So it gives 4:1 redundancy in the 

transform. Furthermore, it remains computationally efficient, since actually it is close to a 

classical real 2-D wavelet transform at each scale in one tree, and the discrete transform can 

be implemented by a ladder filter structure. The quad-tree transform is designed to be, as 

much as possible, translation invariant. It means that if we decide to keep only the details or 

the approximation of a given scale, removing all other scales, shifting the input image only 

produces a shift of the reconstructed filtered image, without aliasing. The most important 

property of DT-CWT is that it can separate more directions than the real wavelet transform. 

The 2-D DWT produces three band-pass subimages at each level, which are corresponding 

to LH, HH, HL, and oriented at angles of 0o, ± 45 o, 90 o. The 2-D DT-CWT can provide six 

www.intechopen.com



Region-Based Fusion for Infrared and LLL Images 

 

289 

subimages in two adjacent spectral quadrants at each level, which are oriented at angles of 

±15 o, ±45 o, ±75 o. The strong orientation occurs because the complex filters are asymmetry 

responses. They can separate positive frequencies from negative ones vertically and 

horizontally. Therefore, positive and negative frequencies will not be aliasing.  

 

 

Fig. 3. The pixel-based image fusion scheme using the DT-CWT 

The pixel-level fusion scheme used here employs the DT-CWT to obtain a MR 

decomposition of the input images. The wavelet coefficients are then combined, using a 

maximum-selection fusion rule to produce a single set of coefficients corresponding to the 

fused image. This process is shown in Fig. 3. The maximum-selection scheme selects the 

largest absolute wavelet coefficient at each location from the input images as the coefficient 

at that location in the fused image. As wavelets tend to pick out the salient features of an 

image, this scheme works well producing good results. 

2.3 Image fusion based on region segmentation and complex wavelet 
Decomposed by the multi-resolution DT-CWT, low-frequency part of the images denotes 

their approximate components, which contains spectral information of the source image. 

High-frequency part of the images denotes their detail components, which contains edge 

detail information of the source images. So, fusion algorithms after the source images 

decomposed are very important for the quality of fusion. At present, the fusion rules are 

commonly that average operator or weighted average operator is used in low-frequency 

domain, max absolute operator is used in high-frequency domain. For the two fused 

heterogeneous source images of the same scene, spectral information of one image is usually 

much richer than the other. For example, spectral information of visible light image is much 

richer than the infrared image. If the fusion rules of weighted average is adopted, part of 

spectrum information of visible light images will be lost, which results in that the spectrum 

information of fused image is less than visible light image.  
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To overcome these problems, we adopt spatial frequency to guide region-based fusion. The 

spatial frequency, which originated from the human visual system, indicates the overall 

active level in an image. The human visual system is too complex to be fully understood 

with present physiological means, but the use of spatial frequency has led to an effective 

objective quality index for image fusion. The spatial frequency of an image block is defined 

as follows: Consider an image, the row ( FR ) and column ( FC ) frequencies of the image 

block are given by 

 2

( , )

1
( ( , ) ( , 1))F

i j

R F i j F i j
M ∈Ω

= − −∑   (4) 

 2

( , )

1
( ( , ) ( 1, ))F

i j

C F i j F i j
M ∈Ω

= − −∑    (5) 

Here Ω is a certain segmentation region. The total spatial frequency FS of the image is  

 2 2
F F FS R C= +    (6) 

We use the fusion of two registration source images A  and B  as an example, the image 

fusion process based on region segmentation and DT-CWT is accomplished by the following 

steps: 

Step 1: Partition the source images A and B , then we get the region segmentations named 

AR and BR , using associated processing, then we can get the associated-segmentation image 

JR . Calculate FS of each region in the associated-segmentation image. 
Step 2: Compare the spatial frequency of the corresponding regions of the two source 
images to decide fusion coefficients: 

 

1
/

/

1
/

A B
A B A BFi Fi
i i Fi F iA B A B

Fi Fi F i Fi

F A A B
i i Fi F i

B A B
i Fi Fi

S S
R R S S k

S S S S k

R R S S k

R S S
k

⎧
+ < <⎪ + +⎪

⎪= >⎨
⎪
⎪ <
⎪⎩

i i

 (7) 

Here F
iR  is the i th region of the fused image, A

FiS and B
FiS are the spatial frequencies of the 

i th region of image A and B , respectively, k is a threshold. 

Step 3: Multi-level DT-CWT transform on the source images A  and B , then we can get DT-

CWT coefficients at different scale Layers, which contain low-frequency coefficient and 

high-frequency coefficient at different scale layers. 

Step 4: Deal low-frequency and high-frequency part with fusion rules and fusion operators, 

then we get low-frequency coefficient and high-frequency coefficient at different scale 

Layers after fusion. 

Step 5: Deal low-frequency coefficient and high-frequency coefficient at different scale 

Layers with DT-CWT inverse transform, then the reconstruction image is to be fused image. 
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2.4 Experiment results 
To evaluate the presented fusion algorithm, we fuse the infrared and visible images of the 

same scene with this algorithm, and compare the fusion image with the fusion images with 

the DWT method (method 1) and SIDWT method (method 2). Fig. 4(a) is an infrared image, 

which presents the clear shapes such as a human being, trees and some high-temperature 

objects; Fig. 4(b) is a visible light (low light level) image, which provides more details than 

the infrared image. Besides this, it also shows some light sources. Fig. 4(c) is the 

segmentation region of the infrared image and Fig. 4(d) is the segmentation region of the 

visual image. Fig. 4(e) is associated region map of infrared/visible images, Fig. 4(f) is fused 

image with method 1 and Fig. 4(g) is fused image with method 2; Fig. 4(h) is fused image 

with the presented method. 

According to the fusion images, the presented fusion algorithm has better effectiveness, 

which preserves not only the spectral information of the visible light image, but also the 

thermal target information of the infrared image. The details of the fusion image with the 

presented algorithm is clear, which shows that region segmentation has a function of 

extracting targets, also shows that the DT-CWT has the capability of capturing edge 

information. Though the fusion images with method 1 and 2 also reserve main scene 

information of the two images, they lose some details slightly. Edge of objects looks blurry 

slightly. 

 

 

    
 

 a) b) c) d)  

 

    
 

 e)  f)  g) h) 
 

Fig. 4. Source images and fused results with different methods. (a) infrared image, (b) visible 
light image, (c) region map of the infrared image, (d) region map of the visible light image, 
(e) associated region map of infrared/visible light images, (f) fused image with method 1, 
(g) fused image with method 2, (h) fused image with the presented method 
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We use entropy, standard deviation, average gradient, structural similarity (SSIM) and 
/AB FQ to objectively evaluate the fusion images. Entropy reflects the average information of 

the image; standard deviation reflects the gray contrast of the fusion images and average 

gradient reflects the capability of expressing details of images; SSIM(x,y , f )  is an efficient 

metric of image fusion performance assessments. Given two images x and y of size M N× , 

let xμ  denote the mean of x , let 2
xσ  and xyσ  be the variance of x  and covariance 

of x and y . The SSIM index between signals x and y  is : 

 
1 2

2 2 2 2
1 2

(2 )(2 )
SSIM( , ) ( , ) ( , ) ( , )

( )( )

x y xy

x y x y

C C
x y l x y c x y s x y

C C

μ μ σ
μ μ σ σ

+ +
= =

+ + + +
  (8) 

In this paper, we use an 11× 11 circular-symmetric Gaussian weighting function to 

modify xμ , yμ , xyσ , xσ and yσ . With such a windowing approach, the quality maps exhibit a 

locally isotropic property. In practice, one usually requires a single overall quality measure 

of the entire image. We use a mean SSIM index to evaluate the overall image quality. 

 
1

1
SSIM(X,Y) SSIM( , )

M

j j
j

x y
M =

= ∑   (9) 

where X  and Y  are the reference and the distorted images, respectively; jx  and jy  are the 

image contents at the jth local window; and M  is the number of local windows of the 

image. 

We use the Wang-Bovik SSIM index in Eq. (9) to define a quality measure SSIM(x,y , f )  for 

image fusion. Here x , y are two input images and f  is the composite image resulting from 

the fusion of x  and y . The measure SSIM(x,y , f )  should express the “quality” of the 

composite image given the inputs x , y . 

We denote by s(x|w)  some saliency of image x  in window w . It should reflect the local 

relevance of image x  within the window w , and it may depend on, e.g. contrast, variance, 

or entropy. Given the local saliencies s(x|w)  and s(y|w)  of the two input images x  and 

y , we compute a local weight x(w)λ  between 0 and 1 indicating the relative importance of 

image x  compared to image y : the larger x(w)λ , the more weight is given to image x . A 

typical choice for x(w)λ  is 

 x

s(x|w)
(w)

s(x|w) s(y|w)
λ =

+
  (10) 

In a similar fashion we compute y(w)λ . Note that in this case 1y x(w) (w)λ λ= − . Now we 

define the fusion quality measure SSIM(x,y , f )  as  

 
1

x y
w W

SSIM(x,y , f ) ( (w)SSIM(x, f |w) (w)SSIM(y, f |w))
W

λ λ
∈

= +∑    (11) 

Thus, in regions where image x  has a large saliency compared to y , the quality measure 

SSIM(x,y , f )  is mainly determined by the “similarity” of f  and input image x . On the 
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other hand, in regions where the saliency of y  is much larger than that of x , the measure 

SSIM(x,y , f )  is mostly determined by the “similarity” of f  and input image y . 
/AB FQ is based on the idea that a fusion algorithm that transfers input gradient information 

into the fused image more accurately performs better. For the fusion of input images 

A and B  resulting in a fused image F , gradient strength g and orientation ( [0, ])α π∈  are 

extracted at each location ( , )n m  from each image using the Sobel operator and used to 

define relative strength and orientation “change” factors G and A , between each input and 

the fused image:  

 

MF
n mAF AF A F

n m n m n m n mA
n m

g
G A

g

, 1
, , , ,

,

( , ) ( ,2 / 2 )π α α π−= − −   (12) 

where M is 1 for F Ag g> and -1 otherwise. An edge information preservation measure 
AFQ models information loss between A and F  with respect to the ‘change’ parameters with 

sigmoid functions defined by constants Γ , gκ , gσ , ακ , and ασ :  

 
AF AF

g n m g n m

AF
n m

G A

Q
e e, ,

,
( ) ( )(1 )(1 )α ακ σ κ σ− −

Γ
=

+ +
  (13) 

Total fusion performance /AB FQ  is evaluated as a sum of local information preservation 

estimates between each of the inputs and fused, AFQ and BFQ , weighted by local perceptual 

importance factors Aw  and Bw  usually defined as local gradient strength: 

 
AF A AF B

n m n m n m n m n mAB F

A B
n m n m n m

Q w Q w
Q

w w

, , , , ,/

, , ,

∀

∀

+
=

+
∑

∑
  (14) 

Table 1 gives the evaluation results of the three former algorithms. The evaluation results 
show the validity of the presented algorithm. 

 

 Entropy 
Average 
gradient 

Standard 
deviation 

SSIM(x,y , f )  /AB FQ  

Method 1 6.8313 0.0218 32.2700 0.6133 0.4282 

Method 2 6.8774 0.0221 33.4626 0.6012 0.5010 

The presented 
algorithm 

6.9329 0.0226 34.1770 0.6304 0.5090 

Table 1. Evaluation results of entropy, average gradient, standard deviation, SSIM x y f( , , )  

and AB FQ /  

3. Region-based color fusion for infrared and LLL images 

Toet demonstrated that transfer of colors could be adapted to transfer the natural color 
characteristics of daylight imagery into multi-band infrared and LLL images. However, this 
particular color mapping method colors the image regardless of scene content, weights all 

www.intechopen.com



 Image Fusion 

 

294 

regions of the source image by the ‘‘global’’ color statistics, and thus the accuracy of the 
coloring is very much dependent on how well the target and source images are matched. 
Based on Toet’s global-coloring framework, we present a new region-based method that the 
image segmentation is firstly carried out and then region coloring is realized.  

3.1 Review of global-coloring method 
The aim of the global-coloring is to give NV images the appearance of normal daylight color 
images. A false-color image (source image) is first formed by assigning multi-band NV 
images to three RGB channels. The false-color images usually have an unnatural color 
appearance. Then, a true-color daylight image (reference image) is manually selected with 
similar scenery (e.g., syntactic content and color appearance) to the NV images. Both source 
and reference images are transformed into a Luminance–Alpha–Beta ( lαβ ) color space, 

followed by calculating the global mean and standard deviation for each lαβ  plane. Next, a 

‘‘statistic- matching’’ procedure is carried out between the source and reference image. The 
mapped source image is then transformed back to RGB space. Finally, the mapped source 
image is transformed into YCbCr space and the ‘‘value’’ component (similar to the 
luminance component in lαβ decomposition) of the mapped source image is replaced with 

the ‘‘fused NV image’’, which is a grayscale image made with multi-band NV images (e.g., 
image intensified and infrared image). This fused image replacement is necessary to make 
the colorized image have a proper and consistent contrast. Notice that the ‘‘luminance’’ 
component in lαβ  space cannot be used directly for this replacement because its dynamic 

range is very different from that of the fused image, whereas the “value” component in 
YCbCr space has the same gray-level range as the fused image. The lab space is utilized for 
color mapping because of its decorrelation property of three channels, whereas the YCbCr 
space is suitable for human interface.  
The fusion process can be summarized in the following steps: 
1. Set the R channel with the infrared image data, G and B channel with low-light-level 

image data and generate the rough color fusion image. Choose a reference image with 
good contrast 

 
S

S

S

R IR

G LL

B LL

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (15) 

2. The RGB values can be converted to LMS space by using the following equation 

 

L R

M G

S B

0.3811 0.5783 0.0402

0.1967 0.7244 0.0782

0.0241 0.1288 0.8444

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (16) 

3. A logarithmic transform is employed here to reduce the data skew that existed in the 
above color space 

  

L

M

S

log

log

log

=

=

=

L

M

S

    (17) 
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4. lαβ space can decorrelate the three axes in the LMS space 

 

l 0.5774 0.5774 0.5774

0.4082 0.4082 0.8165

1.4142 1.4142 0

α
β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

M

S

   (18) 

5. A simple technique, termed “statistic matching”, used to transfer the color 
characteristics from natural daylight imagery to false-color night-vision imagery is 
formulated as 

 
k
Tk k k k

C S S Tk
S

for k l( ) , { , , }
σμ μ α β
σ

= − • + =I I   (19) 

where IC  is the colored image, SI  is the source (false-color) image in lαβ  space; μ  

denotes the mean and σ denotes the standard deviation; the subscripts ‘ S ’ and ‘ T ’ 

refer to the source and reference images, respectively; and the superscript ‘ k ’ is one of 

the color components { , ,l α β }.After this transformation the pixels comprising source 

image have means and standard deviations that conform to the reference daylight color 

image in lαβ space.  
6. The inverse transform from the lab space to the LMS space can be expressed by 

 

l0.5774 0.4082 0.3536

0.5774 0.4082 0.3536

0.5774 0.8165 0

α
β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

M

S

   (20) 

7. The transform depicted above can be inverted by raising the LMS pixel values to the 
tenth order back to linear LMS space, and then using the inverse transform of Eq. (10) to 
RGB space 

 

R L

G M

B S

4.4679 3.5873 0.1193

1.2186 2.3809 0.1624

0.0497 0.2439 1.2045

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (21) 

8. Transfer the fusion image data from RGB space to B RYC C space 

  B

R

Y R

C G

C B

0.2990 0.5870 0.1140

0.1687 0.3313 0.5000

0.5000 0.4187 0.0813

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (22) 

9. The brightness fY  acquired by transforming the fusion image and reference image from 

RGB space to lαβ  space is not usually appropriate, because fY  is the weight sum of the 

infrared and low-light-level images. Thereby, we adopt the fusion image by laplacian 

pyramid fusion method replacing fY . 

10. Transfer the adjusted rough fusion image data from B RYC C space back to RGB space, 

and we can get the ultimate re-staining rough fusion image. 
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 B

R

R Y

G C

B C

1.0000 0.0000 1.4020

1.0000 0.3441 0.7141

1.0000 1.7720 0.0000

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (23) 

3.2 The region-based coloring fusion method 
Based on the framework of the global-coloring method as described in Section 3.1, we 

present a region-based coloring fusion method (see Fig. 5.) that makes the fusion images 

appear more like daylight imagery. The major points for this new method are as follows. 

(a) The infrared and LLL images are rendered segment-by-segment. (b)  The segmented 

regions of the two images are combined and form a new segmented map. (c)  These 

regions are classified according to the target types and the spatial frequencies, and some 

valuable targets are extracted according to the luminance of the infrared images or the 

motion trend of the infrared and LLL video. At present, our classification is still carried 

out manually. (d) The infrared and LLL images are mapped into the RGB space. A lot of 

mapping color methods has been provided, but the simplest mapping method is still 

suitable. For example, the infrared image is mapped into the R channel and the LLL image 

is mapped into the G channel and the average of the infrared and LLL images is mapped 

into the B channel.  (e) Some typical scene images must be chosen as the reference images. 

These images should include some features similar to a certain segmented region. (f) 

Transfer of color is run region by region in the lαβ  space according to Reinhard’s 

method. (g) The gray fusion image is used to replace the Y of the color fusion image in the 

YCbCr space. Here, the gray fusion method may be the fusion method in Section 2 or 

some other classical ones. 

Image segmentation is quite challenging because image contents vary greatly from image 

to image. We adopt two segmentation methods. One is the morphologic method in 

Section 2, the other is the nonlinear diffusion method. The two methods have been proven 

as powerful methods in the denoising and smoothing of image intensities while retaining 

and enhancing edges. Such an image smoothing process can be summarized as a 

successive coarsening of any given image while certain structures in that image are 

retained on a fine scale.  

Basically, diffusion is a PDE (partial differential equation) method that involves two 

operators, smoothing and gradient, in 2D image space. The nonlinear diffusion equation 

is 

 ( )I x
x I x

t

( )
( ) ( )ω∂

= ∇ ⋅ ∇
∂

j j
   (24) 

Where ∇
j

is a vector containing gradients taken at different neighboring configurations (i.e., 

nearest-neighbors, second-neighbors, etc.) and ( )xω are the nonlinear diffusion coefficients. 

The diffusion process smoothes the regions with lower gradients whereas stops smoothing 

at region boundaries with higher gradients. Nonlinear diffusion means the smoothing 

operation depends on the region gradient distribution. In other words, the diffused result is 

a nonlinear function of local gradients. Diffusion must be used with clustering and region 

merging techniques together, which make the segmentation flexible. 
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Fig. 5. Diagram of the proposed local-coloring method 

3.3 Experiment result 
Here two experiments have been carried out with the region-based coloring fusion method. 
The only difference is that the morphologic method is adopted in experiment 1 and the 
nonlinear diffusion method is adopted in experiment 2.  

3.3.1 Experiment 1 
To evaluate the region-based coloring fusion method, we fuse the infrared and LLL images 
of the same scene, and compare the fusion images with the presented method and the 
global-coloring method. Fig. 6(a) is an infrared image, which presents the clear shapes such 
as a human being, trees, building, pool and some high-temperature objects; Fig. 6(b) is a LLL 
image, which provides more details than the infrared image. Besides this, it also shows 
some light sources. Fig. 6(c) is the fusion image acquiring by Section 2. Fig. 6(e), (g), (i) and 
(k) are the fusion images with global-coloring method separately using Fig. 6(d), (f), (h) and 
(j) as reference image. Fig. 6(l) is the segmentation region of the infrared image with 
morphology method and Fig. 6(m) is the segmentation region of the visual image with 
morphology method. Fig. 6(n) is associated region map of infrared/ visible images. In the 
region image, that “person” was perfectly partitioned. The backgrounds such as road, 
building and so on are also well segmented. Fig. 6(o) is fused image with local-coloring 
method using Fig. 6(d), (f), (h) and (j) as reference images. Compared to Fig. 6(e), (g), (i) and 
(k), Fig. 6(o) has a clear color distinction between tree, person, building, pool and lawn. 
From Fig. 6(o) we can see that region-based coloring fusion method result can significantly 
improve observers’ performance and reaction time. 
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 a) b) c) 
 

       
 

 d)  e) f)  g)   
 

     
 

 h)  i) j)  k)   
 

     
 

 l) m) n)  o) 
 

Fig. 6. Source images, reference images and fused results with different methods. (a) 
infrared image, (b) LLL image, (c) fusion image using method in Section 2, (e), (g), (i) and (k) 
fusion images with global-coloring method separately using (d), (f), (h) and (j) as reference 
image, (l) region map of the infrared image, (m) region map of the LLL image, (n) associated 
region map of (l) and (m), (o) fused image with the region-based coloring fusion method 
using (d), (f), (h) and (j) as reference color images 
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3.3.2 Experiment 2 
To evaluate the presented region-based coloring fusion method, we fuse the infrared and 
visible light images of the same scene with this algorithm, and compare the fusion image 
with the fusion images with global-coloring method. Fig. 7(a) is an infrared image, which 
presents the clear shapes such as trees, building, sky and some high-temperature objects; 
Fig. 7(b) is a visible light image, which provides more details than the infrared image.  

 

   
 a) b)  c) 

   
 d) e)  f) 

   
 g) h)  i) 

   
 j) k)  l) 

Fig. 7. Source images, reference images and fused results with different methods. (a) infrared 
image, (b) visible light image, (c) fusion image using gradient pyramid method, (e), (g) and (i) 
fusion images with global-coloring method separately using (d), (f) and (h) as reference image, 
(j) region map of the infrared image, (k) region map of the visible light image, (l) fused image 
with the region-based coloring fusion method using (d), (f) and (h) as reference images 
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Besides this, it also shows some light sources. Fig. 7(c) is the fusion image using gradient 
pyramid method. Fig. 7(e), (g) and (i) are the fusion images with global-coloring method 
separately using Fig. 7(d), (f) and (h) as reference image. Fig. 7(j) is the segmentation region 
of the infrared image with clustering method and Fig. 7(k) is the segmentation region of the 
visual image with clustering method. Fig. 7(l) is fused image with local-coloring method 
using (d), (f) and (h) as reference color images. Compared to Fig. 7(e), (g) and (i), Fig. 7(l) has 
a clear color distinction between tree, building and sky. From Fig. 7(i) we can see that local-
coloring method result can significantly improve observers’ performance and the colors are 
more nature than global-coloring method result. 

4. Conclusion 

This chapter presents a gray image fusion method and a color image fusion method based 
on the region segmentation. The region-based fusion methods use the different feature 
regions of original image and compound the pixel level and feature level of image fusions. 
The effective way to separate target and background proves crucial for the quality of image 
fusion. The proposed method preserves the details of the LLL image and the legible target of 
the infrared image, therefore, the fused image enables the exact location of the target to be 
easily observed and provides all-around information for further processing tasks.  
In the gray method, segmentation is firstly performed on the IR image and LLL images with 
top-bottom-hat filtering and the threshold method, consequently, the DT-CWT coefficients 
from the different regions are merged separately. Finally the fused image is obtained by 
performing inverse DT-CWT. This method keeps the approximate shift invariance and the 
limited redundancy. Region segmentation performs us to using different rules for each 
region of each level. Experimental results evidence this method which could provide better 
fusion than classical fusion methods in terms of objective fusion metric values such as 

entropy, average gradient, standard deviation, SSIM x y f( , , )  and AB FQ /  

In the color fusion method, segmentation is firstly performed on the IR image and LLL 
image with the morphologic method or the diffusion method. At the same time, the IR 
image and LLL image are mapped into the RGB space, and the gray fusion of the two 
images is conducted. Here, the color map rule and the gray fusion method are not very 
important. The false-color images usually have an unnatural color appearance, but a chance 
of region by region color transferring is given to ensure the fusion image similar to natural 
images. The fusion images are transformed into B RYC C space and the brightness is replaced 

by the gray fusion images. Experimental results evidence this method which could provide 
better sense of hierarchy than the global color fusion method in terms of subjective 
evaluation. 
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