711 research outputs found
A Probabilistic Model for Malicious User and Rumor Detection on Social Media
Rumor detection in recent years has emerged as an important research topic, as fake news on social media now has more significant impacts on people\u27s lives, especially during complex and controversial events. Most existing rumor detection techniques, however, only provide shallow analyses of users who propagate rumors. In this paper, we propose a probabilistic model that describes user maliciousness with a two-sided perception of rumors and true stories. We model not only the behavior of retweeting rumors, but also the intention. We propose learning algorithms for discovering latent attributes and detecting rumors based on such attributes, supposedly more effectively when the stories involve retweets with mixed intentions. Using real-world rumor datasets, we show that our approach can outperform existing methods in detecting rumors, especially for more confusing stories. We also show that our approach can capture malicious users more effectively
Joint knowledge graph approach for event participant prediction with social media retweeting
The version of record of this article, first published in Knowledge and Information Systems, is available online at Publisher’s website: https://doi.org/10.1007/s10115-023-02015-0Organized event is an important form of human activity. Nowadays, many digital platforms offer organized events on the Internet, allowing users to be organizers or participants. For such platforms, it is beneficial to predict potential event participants. Existing work on this problem tends to borrow recommendation techniques. However, compared to e-commerce items and purchases, events and participation are usually of a much smaller frequency, and the data may be insufficient to learn an accurate prediction model. In this paper, we propose to utilize social media retweeting activity to enhance the learning of event participant prediction models. We create a joint knowledge graph to bridge the social media and the target domain, assuming that event descriptions and tweets are written in the same language. Furthermore, we propose a learning model that utilize retweeting information for the target domain prediction more effectively. We conduct comprehensive experiments in two scenarios with real-world data. In each scenario, we set up training data of different sizes, as well as warm and cold test cases. The evaluation results show that our approach consistently outperforms several baseline models in both warm and cold tests
Mining urban perceptions from social media data
This vision paper summaries the methods of using social media data (SMD) to measure urban perceptions. We highlight two major types of data sources (i.e., texts and imagery) and two corresponding techniques (i.e., natural language processing and computer vision). Recognizing the data quality issues of SMD, we propose three criteria for improving the reliability of SMD-based studies. In addition, integrating multi-source data is a promising approach to mitigating the data quality problems
- …