3,985 research outputs found
Phase resetting reveals network dynamics underlying a bacterial cell cycle
Genomic and proteomic methods yield networks of biological regulatory
interactions but do not provide direct insight into how those interactions are
organized into functional modules, or how information flows from one module to
another. In this work we introduce an approach that provides this complementary
information and apply it to the bacterium Caulobacter crescentus, a paradigm
for cell-cycle control. Operationally, we use an inducible promoter to express
the essential transcriptional regulatory gene ctrA in a periodic, pulsed
fashion. This chemical perturbation causes the population of cells to divide
synchronously, and we use the resulting advance or delay of the division times
of single cells to construct a phase resetting curve. We find that delay is
strongly favored over advance. This finding is surprising since it does not
follow from the temporal expression profile of CtrA and, in turn, simulations
of existing network models. We propose a phenomenological model that suggests
that the cell-cycle network comprises two distinct functional modules that
oscillate autonomously and couple in a highly asymmetric fashion. These
features collectively provide a new mechanism for tight temporal control of the
cell cycle in C. crescentus. We discuss how the procedure can serve as the
basis for a general approach for probing network dynamics, which we term
chemical perturbation spectroscopy (CPS)
Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable "base editing" system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5'-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish.The use of base editing enables precise genetic modifications in model animals. Here the authors show high efficient single-base editing in zebrafish using modified Cas9 and its VQR variant with an altered PAM specificity
miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer.
The miR-221/222 cluster has been demonstrated to function as oncomiR in human cancers. miR-221/222 promotes epithelial-to-mesenchymal transition (EMT) and confers tamoxifen resistance in breast cancer. However, the effects and mechanisms by which miR-221/222 regulates breast cancer aggressiveness remain unclear. Here we detected a much higher expression of miR-221/222 in highly invasive basal-like breast cancer (BLBC) cells than that in non-invasive luminal cells. A microRNA dataset from breast cancer patients indicated an elevated expression of miR-221/222 in BLBC subtype. S-phase entry of the cell cycle was associated with the induction of miR-221/222 expression. miRNA inhibitors specially targeting miR-221 or miR-222 both significantly suppressed cellular migration, invasion and G1/S transition of the cell cycle in BLBC cell types. Proteomic analysis demonstrated the down-regulation of two tumor suppressor genes, suppressor of cytokine signaling 1 (SOCS1) and cyclin-dependent kinase inhibit 1B (CDKN1B), by miR-221/222. This is the first report to reveal miR-221/222 regulation of G1/S transition of the cell cycle. These findings demonstrate that miR-221/222 contribute to the aggressiveness in control of BLBC
Essays on characteristics of sell-side financial analysts and information environment of financial markets
- …
