954 research outputs found
Protein-mediated DNA Loop Formation and Breakdown in a Fluctuating Environment
Living cells provide a fluctuating, out-of-equilibrium environment in which
genes must coordinate cellular function. DNA looping, which is a common means
of regulating transcription, is very much a stochastic process; the loops arise
from the thermal motion of the DNA and other fluctuations of the cellular
environment. We present single-molecule measurements of DNA loop formation and
breakdown when an artificial fluctuating force, applied to mimic a fluctuating
cellular environment, is imposed on the DNA. We show that loop formation is
greatly enhanced in the presence of noise of only a fraction of , yet
find that hypothetical regulatory schemes that employ mechanical tension in the
DNA--as a sensitive switch to control transcription--can be surprisingly robust
due to a fortuitous cancellation of noise effects
Preventing transition to turbulence: a viscosity stratification does not always help
In channel flows a step on the route to turbulence is the formation of
streaks, often due to algebraic growth of disturbances. While a variation of
viscosity in the gradient direction often plays a large role in
laminar-turbulent transition in shear flows, we show that it has, surprisingly,
little effect on the algebraic growth. Non-uniform viscosity therefore may not
always work as a flow-control strategy for maintaining the flow as laminar.Comment: 9 pages, 8 figure
Transient Analysis of Warm Electron Injection Programming of Double Gate SONOS Memories by means of Full Band Monte Carlo Simulation
In this paper we investigate "Warm Electron Injection" as a mechanism for NOR
programming of double-gate SONOS memories through 2D full band Monte Carlo
simulations. Warm electron injection is characterized by an applied VDS smaller
than 3.15 V, so that electrons cannot easily accumulate a kinetic energy larger
than the height of the Si/SiO2 barrier. We perform a time-dependent simulation
of the program operation where the local gate current density is computed with
a continuum-based method and is adiabatically separated from the 2D full Monte
Carlo simulation used for obtaining the electron distribution in the phase
space. In this way we are able to compute the time evolution of the charge
stored in the nitride and of the threshold voltages corresponding to forward
and reverse bias. We show that warm electron injection is a viable option for
NOR programming in order to reduce power supply, preserve reliability and CMOS
logic level compatibility. In addition, it provides a well localized charge,
offering interesting perspectives for multi-level and dual bit operation, even
in devices with negligible short channel effects
Acoustic Energy and Momentum in a Moving Medium
By exploiting the mathematical analogy between the propagation of sound in a
non-homogeneous potential flow and the propagation of a scalar field in a
background gravitational field, various wave ``energy'' and wave ``momentum''
conservation laws are established in a systematic manner. In particular the
acoustic energy conservation law due to Blokhintsev appears as the result of
the conservation of a mixed co- and contravariant energy-momentum tensor, while
the exchange of relative energy between the wave and the mean flow mediated by
the radiation stress tensor, first noted by Longuet-Higgins and Stewart in the
context of ocean waves, appears as the covariant conservation of the doubly
contravariant form of the same energy-momentum tensor.Comment: 25 Pages, Late
Experimental verification of strong rotational dependence of fluorescence and predissociation yield in the bâÂčΠᔀ(v = 1) level of ÂčâŽNâ
New, rotationally resolved fluorescence-excitation spectra confirm coupled-channel SchroÌdinger-equation predictions of strong rotational dependence of the fluorescence and predissociation yields in the b(v = 1) level of ÂčâŽNâ.This work was supported by the National Science Foundation
grant AST-0906158 and the Australian Research Council
grants DP0558962, DP0773050, and LX0882438
The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs
We present an interdisciplinary review of the generalized Cerenkov emission
of radiation from uniformly moving sources in the different contexts of
classical electromagnetism, superfluid hydrodynamics, and classical
hydrodynamics. The details of each specific physical systems enter our theory
via the dispersion law of the excitations. A geometrical recipe to obtain the
emission patterns in both real and wavevector space from the geometrical shape
of the dispersion law is discussed and applied to a number of cases of current
experimental interest. Some consequences of these emission processes onto the
stability of condensed-matter analogs of gravitational systems are finally
illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como,
Italy from May 16th-21th, 201
Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon
Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique nonâencapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64â256 ”g mlâ1). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384â1024 ”g mlâ1) and colistin (MIC 256 ”g mlâ1) as well as enhanced LLâ37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptAâmediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very highâlevel AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Crossâresistance to other classes of antibiotics was also observed in the heteroresistant colonies. Highâlevel resistance to AMPs may contribute to the pathogenesis of US_NmUC
Comparison of two-phase pipe flow in openFOAM with a mechanistic model
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model
- âŠ