64 research outputs found
Nonlinear dynamic analysis and control design of a solvent-based post-combustion CO2 capture process
A flexible operation of the solvent-based post-combustion CO2capture (PCC) process is of great importance to make the technology widely used in the power industry. However, in case of a wide range of operation, the presence of process nonlinearity may degrade the performance of the pre-designed linear controller. This paper gives a comprehensive analysis of the dynamic behavior and nonlinearity distribution of the PCC process. Three cases are taken into account during the investigation: 1) capture rate change; 2) flue gas flowrate change; and 3) re-boiler temperature change. The investigations show that the CO2capture process does have strong nonlinearity; however, by selecting a suitable control target and operating range, a single linear controller is possible to control the capture system within this range. Based on the analysis results, a linear model predictive controller is designed for the CO2capture process. Simulations of the designed controller on an MEA based PCC plant demonstrate the effectiveness of the proposed control approach
Prediction Study of Tunnel Collapse Risk in Advance based on Efficacy Coefficient Method and Geological Forecast
Collapse is one of the most common accidents in underground constructions. Risk evaluation is the method of measuring
the risk of chamber collapse. To ensure the safety of construction, a risk evaluation model of tunnel collapse based on an
efficacy coefficient method and geological prediction was put forward. Based on the comprehensive analysis of collapse
factors, five main factors including rock uniaxial compressive strength, surrounding rock integrated coefficient, state of
discontinuous structural planes, the angle between tunnel axis and major structural plane and underground water were
chosen as the risk evaluation indices of tunnel collapse. The evaluation indices were quantitatively described by using
TSP203 system and core-drilling to establish the risk early warning model of tunnel collapse based on the basic principle
of the efficacy coefficient method. The model established in this research was applied in the collapse risk recognition of
Kiaochow Bay subsea tunnel in Qingdao, China. The results showed that the collapse risk recognition method presents
higher prediction accuracy and provided a new idea for the risk prediction of tunnel collapse
Prediction study of tunnel collapse risk in advance based on efficacy coefficient method and geological forecast
Collapse is one of the most common accidents in underground constructions. Risk evaluation is the method of measuring the risk of chamber collapse. To ensure the safety of construction, a risk evaluation model of tunnel collapse based on an efficacy coefficient method and geological prediction was put forward. Based on the comprehensive analysis of collapse factors, five main factors including rock uniaxial compressive strength, surrounding rock integrated coefficient, state of discontinuous structural planes, the angle between tunnel axis and major structural plane and underground water were chosen as the risk evaluation indices of tunnel collapse. The evaluation indices were quantitatively described by using TSP203 system and core-drilling to establish the risk early warning model of tunnel collapse based on the basic principle of the efficacy coefficient method. The model established in this research was applied in the collapse risk recognition of Kiaochow Bay subsea tunnel in Qingdao, China. The results showed that the collapse risk recognition method presents higher prediction accuracy and provided a new idea for the risk prediction of tunnel collapse
A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2
Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is a master regulator of antioxidant and/or electrophile response elements (AREs/EpREs)-driven genes involved in homeostasis, detoxification, and adaptation to various stresses. The cytoprotective activity of Nrf2, though being oppositely involved in both cancer prevention and progression, is critically controlled by Keap1 (Kelch-like ECH-associated protein 1), which is an adaptor subunit of Cullin 3-based E3 ubiquitin ligase and also is a key sensor for oxidative and electrophilic stresses. Here, we first report a novel naturally-occurring mutant of Keap1, designated Keap1ΔC, which lacks most of its C-terminal Nrf2-interacting domain essential for inhibition of the cap’n’collar (CNC) basic-region leucine zipper (bZIP) factor. This mutant Keap1ΔC is yielded by translation from an alternatively mRNA-spliced variant lacking the fourth and fifth exons, but their coding sequences are retained in the wild-type Keap1 locus (with no genomic deletions). Although this variant was found primarily in the human highly-metastatic hepatoma (MHCC97H) cells, it was widely expressed at very lower levels in all other cell lines examined. Such Keap1ΔC retains no or less ability to inhibit Nrf2, so that it functions as a dominant-negative competitor of Keap1 against its inhibition of Nrf2 due to its antagonist effect on Keap1-mediated turnover of Nrf2 protein
Synergism and Antagonism of Two Distinct, but Confused, Nrf1 Factors in Integral Regulation of the Nuclear-to-Mitochondrial Respiratory and Antioxidant Transcription Networks
There is hitherto no literature available for explaining two distinct, but confused, Nrf1 transcription factors, because they shared the same abbreviations from nuclear factor erythroid 2-related factor 1 (also called Nfe2l1) and nuclear respiratory factor (originally designated α-Pal). Thus, we have here identified that Nfe2l1Nrf1 and α-PalNRF1 exert synergistic and antagonistic roles in integrative regulation of the nuclear-to-mitochondrial respiratory and antioxidant transcription profiles. In mouse embryonic fibroblasts (MEFs), knockout of Nfe2l1-/- leads to substantial decreases in expression levels of α-PalNRF1 and Nfe2l2, together with TFAM (mitochondrial transcription factor A) and other target genes. Similar inhibitory results were determined in Nfe2l2-/- MEFs but with an exception that both GSTa1 and Aldh1a1 were distinguishably upregulated in Nfe2l1-/- MEFs. Such synergistic contributions of Nfe2l1 and Nfe2l2 to the positive regulation of α-PalNRF1 and TFAM were validated in Keap1-/- MEFs. However, human α-PalNRF1 expression was unaltered by hNfe2l1α-/-, hNfe2l2-/-ΔTA, or even hNfe2l1α-/-+siNrf2, albeit TFAM was activated by Nfe2l1 but inhibited by Nfe2l2; such an antagonism occurred in HepG2 cells. Conversely, almost all of mouse Nfe2l1, Nfe2l2, and cotarget genes were downexpressed in α-PalNRF1+/- MEFs. On the contrary, upregulation of human Nfe2l1, Nfe2l2, and relevant reporter genes took place after silencing of α-PalNRF1, but their downregulation occurred upon ectopic expression of α-PalNRF1. Furtherly, Pitx2 (pituitary homeobox 2) was also identified as a direct upstream regulator of Nfe2l1 and TFAM, besides α-PalNRF1. Overall, these across-talks amongst Nfe2l1, Nfe2l2, and α-PalNRF1, along with Pitx2, are integrated from the endoplasmic reticulum towards the nuclear-to-mitochondrial communication for targeting TFAM, in order to finely tune the robust balance of distinct cellular oxidative respiratory and antioxidant gene transcription networks, albeit they differ between the mouse and the human. In addition, it is of crucial importance to note that, in view of such mutual interregulation of these transcription factors, much cautions should be severely taken for us to interpret those relevant experimental results obtained from knockout of Nfe2l1, Nfe2l2, α-Pal or Pitx2, or their gain-of-functional mutants
- …