111 research outputs found

    Evaluation of High-Rate GNSS-PPP for Monitoring Structural Health and Seismogeodesy Applications

    Get PDF
    This study evaluates the usability of the GNSS-PPP method for structural health monitoring and seismogeodesy applications. Two test scenarios were considered. The first test scenario included monitoring hormonic oscillations in amplitude of 5 mm to 20 mm with the frequency range of 0.2 Hz to 2.5 Hz that were generated using a shaking table, which has the ability to move in one direction in a horizontal plane. The second test scenario was carried out by simulating the El-Centro Earthquake as a seismogeodesy application. The used GNSS data comprised dual-frequency observations with a 10 Hz sampling rate. GNSS-derived positioning time series were obtained by processing the data using a post-mission kinematic PPP method and results were compared, in both the frequency domain and time domain, with LVDT (Linear Variable Differential Transformer) data, taking as a reference. Results show that the high-rate GNSS PPP method can capture the frequencies of harmonic movements comparable to the LVDT. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT data at the order of mm level. These results demonstrate the ability of the high-rate GNSS PPP method to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both the structural health and seismogeodesy applications

    Investigating the ability of high-rate GNSS-PPP for determining the vibration modes of engineering structures: small scale model experiment

    Get PDF
    This study evaluates the performance of the Precise Point Positioning method using Global Navigation Satellite System measurements (GNSS-PPP) for monitoring vibration modes of shear type buildings excited by harmonic ground motions and hammer tests. For experimental testing, the shear type lumped-mass building system is represented by a specially designed metal frame model, resembling a three story building, which was excited on a small scale shaking table. The excitation protocols applied were harmonic motions with different frequencies and amplitudes. The metal model has special deformation plates at the column tips to prevent the nonlinear rotations and out-of-plane motions for the entire system. The fundamental vibration periods of the model structure were computed by a Finite Element Mathematical (FEM) model, which were compared with the position variations determined by GNSS-PPP. Two GNSS receivers were mounted on top of the model structure on the line perpendicular to the motion axis to measure the rotation motion. The GNSS data comprised dual-frequency observations with a 10 Hz sampling rate. GNSS-derived positioning was obtained by processing the data using a post-mission kinematic PPP method with fixed phase ambiguities. Analysis of the characteristics of the vibration frequencies showed that the high-rate GNSS PPP method can capture the frequencies of first motion mode of shear type structural response when compared with the FEM output. Results demonstrate the efficiency of the high-rate GNSS PPP method in monitoring first motion mode of a natural frequency

    Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table

    Get PDF
    © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and with ambiguity resolution (PPP-AR), in structural health monitoring applications based on experimental tests using a single-axis shake table. To evaluate the performance of the PPP methodologies, harmonic oscillations of the motion table with amplitudes ranging from 5 to 10 mm and frequency between 0.1 and 3 Hz were generated representing a wide range of possible structural motions. In addition, ground motion similar to those experienced during a real earthquake, the 1995 Kobe earthquake, and step motions were generated on the shake table. GNSS PPP-derived positioning results at 20 Hz were compared, in both of the frequency and time domains, with reference data comprising LVDT data and relative positioning data. Results show that both PPP methods' measurements can be used in the computation of harmonic oscillation frequencies compared to the LVDT and relative positioning values. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT values on the order of millimeters. The results of a step motion experiment demonstrated that PPP-AR is better than traditional PPP in exhibiting quasi-static or static displacement. Moreover, the capabilities of traditional PPP and PPP-AR methods are evaluated with respect to the natural frequency of a small-scale structural model excited on the shake table. The frequency spectrum of this small-scale structural model derived from the PPP methods is consistent with finite-element model (FEM)-predicted values and relative positioning. The research presented here demonstrates the potential of the high-rate GNSS PPP and PPP-AR methods to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both structural and seismological applications. Specifically, all results reveal that high-rate PPP-AR is more accurate than traditional PPP for both dynamic and static displacement detection

    Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations

    Get PDF
    Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations

    Aktivna deformacija Zemljine površine utvrđena preciznim nivelmanskim premjerom u Afyon-Akşehir grabenu u Zapadnoj Anadoliji u Turskoj

    Get PDF
    In the actively deforming region of western Anatolia, crustal deformation is accommodated by destructive earthquakes and a variety of aseismic events. In this study, we investigated the 2016–2017 aseismic sequence located in the Bolvadin Fault, one of the segments of the Akşehir-Simav Fault System of western Anatolia by analysing surface deformation derived from detailed geological mapping. Our findings suggest that surface deformation in the Bolvadin Fault is accommodated by aseismic episodes. During the field studies in the Bolvadin area, progressive surface deformations, such as surface faults and earth fissures with a length of 800 meters to 3 kilometres and strike of N15°E to N70°E were mapped on a 1/5000 scale. Furthermore, a levelling network was established to calculate the vertical displacements and deformation rate along the surface deformations. Precision level measurements were undertaken in 2016 and 2017. On the routes to the NW of the Bolvadin settlement, a vertical deformation rate of 30 mm/yr was detected in the period of 2016–2017, and a large deformation rate of 40 mm/yr was detected in the same period.Aktivna deformacija Zemljine kore se u regiji Zapadne Anadolije kompenzira razornim potresima i drugim seizmičkim događajima. U ovom smo radu na temelju detaljnog geološkog kartiranja analizirali deformaciju površine kako bismo proučili niza seizmičkih događaja u razdoblju 2016.–2017. na lokaciji rasjeda Bolvadin, jednoga od segmenata rasjednoga sustava Akşehir-Simav u Zapadnoj Anadoliji. Naši rezultati ukazuju na to da se površinska deformacije kompenzira tijekom aseizmičkih epizoda. Tijekom terenskih istraživanja u području Bolvadin, progresivne su površinske deformacije, poput površinskih rasjeda ili pukotina duljina od 800 m do 3 km, pružanja N15°E do N70°E, kartirane u mjerilu 1:5 000. Nadalje, uspostavljena je nivelmanska mreža kako bi se izmjerila brzina pomaka i deformacija. Precizna nivelmanska mjerenja izvedena su 2016. i 2017. godine. Na pravcima usmjerenima SZ od naselja Bolvadin, ustanovljena je brzina vertikalne deformacije od 30 mm/god., a u istom je razdoblju izmjerena i velika brzina deformacije od 40 mm/god

    Experimental assessment of post-processed kinematic Precise Point Positioning method for structural health monitoring

    No full text
    © 2014 Taylor & Francis. Monitoring the response of engineering structures, such as tall buildings, tower and large-scale bridges, under severe loading conditions, such as strong earthquake or wind storm, is an important requirement to verify their design and construction and to evaluate structural condition and reliability. In the last two decades, high-rate real-time or post-processed kinematic differential Global Positioning System (DGPS) has been widely used in dynamic displacement measurements of civil engineering structures. In recent years, interest has increased for Precise Point Positioning (PPP) due to its capability to generate positioning solutions as accurate as DGPS. In this study, the potential of post-processed kinematic PPP in terms of monitoring dynamic displacement response of a structure has been explored based on free damped oscillation events obtained from a model structure, which is able to vibrate in the fundamental and higher modes of vibration. A number of experiments have been carried out and five events, each of which is different character, have been selected to compare PPP results with DPGS results in the time and frequency domain. The results clearly demonstrate that the PPP method, like the DGPS method, offers great potential for the measurement of horizontal and vertical dynamic movement of structures. The impact of a short period (one minute) of observation length on the result of the kinematic PPP method was also investigated in terms of sensing the dynamic movement of a structure. Twenty selected one-minute data-sets extracted from a one-hour original data-set were processed by Canadian spatial reference system PPP and each one-minute PPP solution was compared with the corresponding segment obtained from the one-hour PPP solution. The results show that the one-minute PPP solution is able to extract the fundamental natural frequency of the oscillation in the horizontal and vertical component just like the one-hour PPP solution after the offset is removed and the lower frequency trend component is filtered out

    Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures

    No full text
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. The fundamental dynamic property of the structures is the oscillation frequency, which can be derived from the response measurements. The structures with a short/medium/long span (e.g. suspended or cable bridges) vibrate vertically rather than horizontally. The potential of GNSS precise point positioning (PPP) for detecting the dynamic response of vibrating structures has been the focus of recent studies. In this study, the usability of GNSS PPP in detecting the dynamic displacement response of a vertically vibrating structure was experimentally investigated. A number of experiments on cantilever beam structures were conducted and four cases with different vibration frequencies, ranging from 0.94 to 2.90 Hz, were selected to compare the PPP and precise relative methods in the time, position and frequency domain. In addition, the effects of the ultra-rapid and final precise orbit product on the kinematic PPP solution were examined in terms of detecting vertical oscillation. The results clearly show that a high-rate kinematic PPP method can detect the fundamental frequency of vertical vibration to evaluate the dynamic movement of long/medium/short-span suspended bridges and highway viaducts
    corecore