138 research outputs found
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
Ziziphi spinosae lily powder suspension in the treatment of depression-like behaviors in rats
Abstract Background Depression is a chronic, recurring and potentially life-threatening illness. Current treatments for depression are characterized by a low success rate and associated with a wide variety of side effects. The aim of the present study was to evaluate the behavioral anti-depressant effect of a novel herbal compounds named ziziphi spinosae lily powder suspension, as well as to investigate its potential mechanisms. Methods Except for body weight, depressive-like behaviors were also evaluated using forced swimming test, sucrose consumption test and open field test. In order to investigate the underlying potential mechanisms, serum 5-HT and brain 5-HIAA were measured using ultrahigh-performance liquid chromatography and high-performance liquid chromatography, respectively. Results Results showed that the herbal compounds ziziphi spinosae lily suspension could alleviate depressive symptoms in rat model of chronic depression. Biochemical analysis revealed that the herbal compounds elevated serum 5-HT and brain 5-HIAA. Conclusion Ziziphi spinosae lily powder suspension could alleviate depressive behaviors in depression model animals. The underlying mechanisms may be related to the increase of serum 5-HT in peripheral blood and 5-HIAA in brain. The study provides important mechanistic insights into the protective effect of the herbal compounds against chronic depressive disorder and suggests that the herbal compounds may be a potential pharmacological agent for treatment of major depressive disorder
Characterization of Ultrafine Particles and Other Traffic Related Pollutants near Roadways in Beijing
Developing countries, such as China, are facing serious air pollution issues due to fast economic development. In this study, traffic related air pollutants, including number concentration of ultrafine particles (UFPs, diameter < 100 nm), mass concentrations of PM2.5 and black carbon (BC) were measured near the Peking University (PKU) campus in Beijing in December 2011. Data were collected concurrently at a roadway site and on PKU campus. Meteorological data were collected at approximately 40 meters northeast from the roadway sampling site. The traffic density was determined from recorded video footage. Roadside UFP and PM2.5 concentrations were not significantly higher than on campus. A statistically significant Pearson's correlation of 0.75 was found between BC and PM2.5 mass concentrations. No apparent correlation was found between wind speed and UFP number concentrations, but strong log-decay correlations were found between wind speed and PM2.5 (R-2 = 0.80). There were three days during the measurements when both PM2.5 mass concentrations and UFP number concentrations were higher at the campus site than at the roadway site. This suggests there were potential local emission sources on campus. Temporal profile of UFPs at the campus site peaked around lunch and dinner time, suggesting emissions from the surrounding restaurants and cafeteria that used Chinese-style cooking might have contributed to the observed PM2.5 and UFP levels on campus.National Science Foundation [32525-A6010 AI]; National Natural Science Foundation of China [41121004]; State Key Joint Laboratory of Environment Simulation and Pollution ControlSCI(E)[email protected]; [email protected]
- …