94 research outputs found

    DTG-SSOD: Dense Teacher Guidance for Semi-Supervised Object Detection

    Full text link
    The Mean-Teacher (MT) scheme is widely adopted in semi-supervised object detection (SSOD). In MT, the sparse pseudo labels, offered by the final predictions of the teacher (e.g., after Non Maximum Suppression (NMS) post-processing), are adopted for the dense supervision for the student via hand-crafted label assignment. However, the sparse-to-dense paradigm complicates the pipeline of SSOD, and simultaneously neglects the powerful direct, dense teacher supervision. In this paper, we attempt to directly leverage the dense guidance of teacher to supervise student training, i.e., the dense-to-dense paradigm. Specifically, we propose the Inverse NMS Clustering (INC) and Rank Matching (RM) to instantiate the dense supervision, without the widely used, conventional sparse pseudo labels. INC leads the student to group candidate boxes into clusters in NMS as the teacher does, which is implemented by learning grouping information revealed in NMS procedure of the teacher. After obtaining the same grouping scheme as the teacher via INC, the student further imitates the rank distribution of the teacher over clustered candidates through Rank Matching. With the proposed INC and RM, we integrate Dense Teacher Guidance into Semi-Supervised Object Detection (termed DTG-SSOD), successfully abandoning sparse pseudo labels and enabling more informative learning on unlabeled data. On COCO benchmark, our DTG-SSOD achieves state-of-the-art performance under various labelling ratios. For example, under 10% labelling ratio, DTG-SSOD improves the supervised baseline from 26.9 to 35.9 mAP, outperforming the previous best method Soft Teacher by 1.9 points.Comment: Technical repor

    Improving Robust Fairness via Balance Adversarial Training

    Full text link
    Adversarial training (AT) methods are effective against adversarial attacks, yet they introduce severe disparity of accuracy and robustness between different classes, known as the robust fairness problem. Previously proposed Fair Robust Learning (FRL) adaptively reweights different classes to improve fairness. However, the performance of the better-performed classes decreases, leading to a strong performance drop. In this paper, we observed two unfair phenomena during adversarial training: different difficulties in generating adversarial examples from each class (source-class fairness) and disparate target class tendencies when generating adversarial examples (target-class fairness). From the observations, we propose Balance Adversarial Training (BAT) to address the robust fairness problem. Regarding source-class fairness, we adjust the attack strength and difficulties of each class to generate samples near the decision boundary for easier and fairer model learning; considering target-class fairness, by introducing a uniform distribution constraint, we encourage the adversarial example generation process for each class with a fair tendency. Extensive experiments conducted on multiple datasets (CIFAR-10, CIFAR-100, and ImageNette) demonstrate that our method can significantly outperform other baselines in mitigating the robust fairness problem (+5-10\% on the worst class accuracy

    Influences of swab types and storage temperatures on isolation and molecular detection of Mycoplasma gallisepticum and Mycoplasma synoviae.

    Get PDF
    Routine diagnosis of Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) is performed by collecting oropharyngeal swabs, followed by isolation and/or detection by molecular methods. The storage temperature, storage duration and the type of swabs could be critical factors for a successful isolation or molecular detection. The aim of this study was to compare the influence of different types of cotton tipped swabs stored at different temperatures, on detection of MG and MS. To achieve this, a combined use of traditional culture analysis (both agar and broth), with modern molecular detection methods was utilised. Performances of wooden and plastic shaft swabs, both without transport medium, were compared. Successful culture of M. gallisepticum was significantly more efficient from plastic swabs when compared to wooden, whereas no difference was seen for re-isolation of M. synoviae. Storage at 4 oC compared to room temperature also increased the efficiency of culture detection for both Mycoplasma species. When stored at room temperature, PCR detection limits of both MG and MS were significantly lower for wooden compared to plastic swabs. The qPCR data showed similar detection limits for both swab types when stored at both temperatures. Results suggest that swabs with plastic shaft should be preferred for MG and MS detection by both culture and PCR. While a lower storage temperature (4°C) is optimal for culture recovery, it seems that both temperatures investigated here are adequate for molecular detection and it is the swab type which carries a greater influence

    A \u3cem\u3eLIN28B\u3c/em\u3e Tumor-Specific Transcript in Cancer

    Get PDF
    The diversity and complexity of the cancer transcriptome may contain transcripts unique to the tumor environment. Here, we report a LIN28B variant, LIN28B-TST, which is specifically expressed in hepatocellular carcinoma (HCC) and many other cancer types. Expression of LIN28B-TST is associated with significantly poor prognosis in HCC patients. LIN28B-TST initiates from a de novo alternative transcription initiation site that harbors a strong promoter regulated by NFYA but not c-Myc. Demethylation of the LIN28B-TST promoter might be a prerequisite for its transcription and transcriptional regulation. LIN28B-TST encodes a protein isoform with additional N-terminal amino acids and is critical for cancer cell proliferation and tumorigenesis. Our findings reveal a mechanism of LIN28B activation in cancer and the potential utility of LIN28B-TST for clinical purposes

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore