143 research outputs found

    Hollow Titanium Silicalite Zeolite: From Fundamental Research to Commercial Application in Environmental-Friendly Catalytic Oxidation Processes

    Get PDF
    The systematical investigation on the synthesis, characterization, formation mechanism, and catalytic application of hollow titanium silicalite (HTS) zeolite has been reviewed. HTS is prepared through a “dissolution–recrystallization” post-treatment in the presence of template under hydrothermal conditions. Compared with TS-1, HTS is of unique hollow voids and with high framework Ti content, which significantly increase the mass diffusion and the amount of active sites, respectively. Thus, HTS zeolite displays high catalytic activity and stability in many oxidation processes with H2O2 oxidant, that is, cyclohexanone ammoximation, phenol hydroxylation, propylene epoxidation, Baeyer-Villiger oxidation of cyclohexanone, and selective oxidation of aromatics and cycloalkanes. The former three ones have been commercialized and run smoothly, which have promising economic and environmental significance

    Improving the emission efficiency of MBE-grown GaN/AlN QDs by strain control

    Get PDF
    The quantum-confined stark effect induced by polarization has significant effects on the optical properties of nitride heterostructures. In order to improve the emission efficiency of GaN/AlN quantum dots [QDs], a novel epitaxial structure is proposed: a partially relaxed GaN layer followed by an AlN spacer layer is inserted before the growth of GaN QDs. GaN/AlN QD samples with the proposed structure are grown by molecular beam epitaxy. The results show that by choosing a proper AlN spacer thickness to control the strain in GaN QDs, the internal quantum efficiencies have been improved from 30.7% to 66.5% and from 5.8% to 13.5% for QDs emitting violet and green lights, respectively

    Environmental-Friendly Catalytic Oxidation Processes Based on Hierarchical Titanium Silicate Zeolites at SINOPEC

    Get PDF
    Since it was claimed by EniChem in 1983 for the first time, titanium silicate‐1 (TS‐1) zeolite presented the most delightful catalytic performance in the area of selective organic oxidation reactions. To enhance the mass diffusion property, hierarchical titanium silicate with hollow cavities within crystal was prepared by using a post‐synthesis treatment in the presence of organic template, and then, it was commercially produced and employed in many industrial catalytic oxidation processes, such as propylene epoxidation, phenol hydroxylation, and cyclohexanone ammoximation. Moreover, we also developed several totally novel oxidation reactions on hollow titanium silicate (HTS) zeolite, i.e., Baeyer‐Villiger oxidation of cyclohexanone and chlorohydrination of allyl chloride with HCl and H2O2. In all cases, HTS shows much better catalytic performance than TS‐1, attributing to the mass diffusion intensification by introducing hollow cavities. On the other hand, enormous works on synthesizing hierarchical TS‐1 zeolites with open intracrystalline mesopores have been done via silanization treatment and recrystallization. Based on them, several bulk molecule oxidation processes with tert‐butyl hydroperoxide, such as epoxidation of fatty acid methyl ester (FAME) and large olefins, have been carried out. As a consequence, hierarchical TS‐1 zeolites supply a platform for developing environmental‐friendly catalytic oxidation processes to remarkably overcome the drawbacks of traditional routes

    Transcriptome analysis of differentially expressed circRNAs miRNAs and mRNAs during the challenge of coccidiosis

    Get PDF
    Avian coccidiosis is a common enzootic disease caused by infection of Eimeria species parasites. It causes huge economic losses in the global poultry industry. Current control using anticoccidial drugs or vaccination is limited due to drug resistance and the relatively high cost of vaccines. Improving host genetic resistance to Eimeria species is considered an effective strategy for improved control of coccidiosis. Circular RNAs (circRNAs) have been found to function as biomarkers or diagnoses of various kinds of diseases. The molecular biological functions of circRNAs, miRNAs, and mRNAs related to Sasso chicken have not yet been described during Eimeria species challenge. In this study, RNA-seq was used to profile the expression pattern of circRNAs, miRNAs, and mRNAs in spleens from Eimeria tenella-infected and non-infected commercial dual-purpose Sasso T445 breed chickens. Results showed a total of 40 differentially expressed circRNAs (DEcircRNAs), 31 differentially expressed miRNAs (DEmiRNAs), and 820 differentially expressed genes (DEmRNAs) between infected and non-infected chickens. Regulatory networks were constructed between differentially expressed circRNAs, miRNAs, and mRNAs to offer insights into the interaction mechanisms between chickens and Eimeria spp. Functional validation of a significantly differentially expressed circRNA, circMGAT5, revealed that circMGAT5 could sponge miR-132c-5p to promote the expression of the miR-132c-5p target gene monocyte to macrophage differentiation-associated (MMD) during the infection of E. tenella sporozoites or LPS stimulation. Pathologically, knockdown of circMGAT5 significantly upregulated the expression of macrophage surface markers and the macrophage activation marker, F4/80 and MHC-II, which indicated that circMGAT5 might inhibit the activation of macrophage. miR-132c-5p markedly facilitated the expression of F4/80 and MHC-II while circMGAT5 could attenuate the increase of F4/80 and MHC-II induced by miR-132c-5p, indicating that circMGAT5 exhibited function through the circMGAT5-miR-132c-5p-MMD axis. Together, our results indicate that circRNAs exhibit their resistance or susceptive roles during E. tenella infection. Among these, circMGAT5 may inhibit the activation of macrophages through the circMGAT5-miR-132c-5p-MMD axis to participate in the immune response induced by Eimeria infection

    DAFNet: A dual attention-guided fuzzy network for cardiac MRI segmentation

    Get PDF
    Background: In clinical diagnostics, magnetic resonance imaging (MRI) technology plays a crucial role in the recognition of cardiac regions, serving as a pivotal tool to assist physicians in diagnosing cardiac diseases. Despite the notable success of convolutional neural networks (CNNs) in cardiac MRI segmentation, it remains a challenge to use existing CNNs-based methods to deal with fuzzy information in cardiac MRI. Therefore, we proposed a novel network architecture named DAFNet to comprehensively address these challenges. Methods: The proposed method was used to design a fuzzy convolutional module, which could improve the feature extraction performance of the network by utilizing fuzzy information that was easily ignored in medical images while retaining the advantage of attention mechanism. Then, a multi-scale feature refinement structure was designed in the decoder portion to solve the problem that the decoder structure of the existing network had poor results in obtaining the final segmentation mask. This structure further improved the performance of the network by aggregating segmentation results from multi-scale feature maps. Additionally, we introduced the dynamic convolution theory, which could further increase the pixel segmentation accuracy of the network. Result: The effectiveness of DAFNet was extensively validated for three datasets. The results demonstrated that the proposed method achieved DSC metrics of 0.942 and 0.885, and HD metricd of 2.50mm and 3.79mm on the first and second dataset, respectively. The recognition accuracy of left ventricular end-diastolic diameter recognition on the third dataset was 98.42%. Conclusion: Compared with the existing CNNs-based methods, the DAFNet achieved state-of-the-art segmentation performance and verified its effectiveness in clinical diagnosis

    Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19

    Get PDF
    Rationale: Use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. Objective: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in COVID-19 patients with hypertension. Methods and Results: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [IQR 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [IQR 57-69]; 53.5% men), who were admitted to nine hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. Unadjusted mortality rate was lower in the ACEI/ARB group versus the non-ACEI/ARB group (3.7% vs. 9.8%; P = 0.01). In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted HR, 0.42; 95% CI, 0.19-0.92; P =0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted HR, 0.37; 95% CI, 0.15-0.89; P = 0.03). Further subgroup propensity score-matched analysis indicated that, compared to use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted HR, 0.30; 95%CI, 0.12-0.70; P = 0.01) in COVID-19 patients with hypertension. Conclusions: Among hospitalized COVID-19 patients with hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB non-users. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk
    • 

    corecore