16 research outputs found

    Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide.

    Get PDF
    BackgroundTemozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 Î¼M).MethodsMGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 Î¼M. Clonogenic GSC surviving 500 Î¼M TMZ (GSC-500 Î¼M TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC.ResultsThe molecular signatures characterized an activation of protective stress responses in GSC-500 Î¼M TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 Î¼M TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 Î¼M TMZ and GSC-parental to 35 Î¼M TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489).ConclusionsThese data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT

    Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are Associated with Metabolic Adaptation to Reduced Glucose Dependence

    Get PDF
    <div><p>Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment–introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD<sup>+</sup> levels accompanied by upregulated mRNA levels of SIRT1/PGC-1α axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma.</p></div

    Regulation of cellular and molecular activities associated with metabolic adaptation to reduced glucose usage in treatment-resistant GSC clones.

    No full text
    <p>A. Intracellular NAD<sup>+</sup> levels in sensitive clones and resistant clones (10<sup>4</sup> cells/well) were determined by a NAD<sup>+</sup>/NADH colorimetric assay kit. The amount of NAD<sup>+</sup> in cell lysate was quantified by comparing with NAD<sup>+</sup>/NADH standard solutions. B. Endogenous levels of pAMPK in resistant clones and sensitive clones were determined by a phospho-AMPKα (Thr172) ELISA Kit. Seventy micrograms of cell lysates from each sample were used in the assay. The magnitude of the absorbance for the developed color is proportional to the quantity of AMPKα phosphorylated at Thr172. C. Representative image of Western blot analysis of AMPKα, phospho-AMPKα (Thr172), Akt, phospho-Akt (Thr308), or β-actin expressed in sensitive clones and resistant clones. D. GSC autophagy is measured with a fluorescent acidotropic dye and flow cytometry based on a correlation between autophagic activity and overall lysosomal acidity. The intensity of lysosomal staining is proportional to lysosomal acidity. Data in A, B, and D represent mean values ± SD of 3 clones, which are derived from 3 patients, in triplicate wells. *p<0.05 versus sensitive clones. E.The mRNA expression levels of indicated genes were analyzed by semi-qtRT-PCR with specific primers. β-actin was used as an internal control gene.</p

    Treatment-resistant GSC clones exhibited a delay in tumor formation compared to those of treatment-sensitive GSC clones.

    No full text
    <p>A. 2×10<sup>5</sup> cells derived from treatment-sensitive clones, RT-resistant clones, and RT+TMZ-resistant clones were stereotactically injected into the brains of SCID mice and days required for developing neurological signs by tumor growth in each mouse were recorded. Data represent mean values ± SD of indicated numbers of animals that have developed tumors. *p<0.05 versus RT+TMZ-resistant clones, **p<0.001 versus treatment-sensitive clones. B. Representative macrophotographic image of glioma xenografts initiated by treatment-sensitive clones, RT-resistant clones and RT+TMZ resistant clones that are growing in intracranial site. C. Representative hematoxylin and eosin (HE) staining of xenograft tumors. Brain tissues from mice injected with either treatment-sensitive or treatment-resistant clones display invasive growth of gliomas and exhibits histopathological features of human glioblastoma, including hypercellularity (Figure 4C, a, g, m), hyperchromatism (Figure 4C, b, h, n), pleomorphism (Figure 4C, c, i, o), mitosis (Figure 4C, d, j, p), vascular endothelial hyperplasia (Figure 4C, e, k, q), and oligodendroglial components (Figure 4C, f, l, r). Magnification, 20X and 40X as indicated.</p
    corecore