43 research outputs found

    Effects of Different Freezing Temperatures on the Quality of Rice Dumpling Dough

    Get PDF
    To investigate the effects of different freezing temperatures on the quality of rice dumpling dough, this paper investigated the effects of freezing at −20, −30, −80, −196 ℃ (liquid nitrogen) on the physicochemical indexes of rice dumpling dough, such as texture characteristics, water loss rate and color. The water distribution and microstructures of rice dumpling dough were studied by NMR, MRI, SEM and other analytical techniques. The results showed that the lower the freezing temperature, the faster the freezing rate. With the decrease of freezing temperature, the water loss rate and light transmittance of rice dumpling dough improved significantly (P0.05) in whiteness, and the magnitude of textural changes was small. The microstructure of the rice dumpling dough was more complete at ultra-low temperature freezing. During the freezing process, the internal water state of the rice dumpling dough was changed, free water and multilayer water were transformed into bound water, liquid water molecules were reduced, and hydrogen proton density was decreased. Combined with the actual situation, the freezing temperature below −30 ℃ could significantly improve the quality of rice dumpling dough

    Deficiency of Brummer Impaires Lipid Mobilization and JH-Mediated Vitellogenesis in the Brown Planthopper, Nilaparvata lugens

    Get PDF
    Provisioning of sufficient lipids and vitellogenin to the oocytes is an indispensable process for fecundity of oviparous insects. Acute mobilization of lipid reserves in insects is controlled by the Brummer (Bmm), an orthologous of human adipose triglyceride lipase (ATGL). To investigate the functional roles of brummer-mediated lipolysis in the fecundity of the brown planthopper, Nilaparvata lugens, RNA interference (RNAi) analyses were performed with double-stranded RNA (dsRNA) against NlBmm in adult females. Knockdown of NlBmm expression resulted in obesity and blocked lipid mobilization in the fat body. In addition, NlBmm silencing led to retarded ovarian development with immature eggs and less ovarioles, decreased number of laid eggs, prolonged preoviposition period and egg duration. Furthermore, severe reductions of vitellogenin and its receptor abundance were observed upon NlBmm knockdown. The transcript levels of NlJHE (juvenile hormone esterase) which degrades JH were up-regulated, whereas the expression levels of JH receptors NlMet (Methoprene-tolerant) and NlTai (Taiman) and their downstream transcription factors NlKr-h1 (Krüppel-homolog 1) and NlBr (Broad-Complex) were down-regulated after suppression of NlBmm. JH-deficient females exhibited impaired vitellogenin expression, whereas JH exposure stimulated vitellogenin biosynthesis. Moreover, JH topical application partially rescued the decrease in vitellogenin expression in the NlBmm-deficient females. These results demonstrate that brummer-mediated lipolytic system is essential for lipid mobilization and energy homeostasis during reproduction in N. lugens. In addition to the classical view of brummer as a direct lipase with lipolysis activity, we propose here that brummer-mediated lipolysis works through JH signaling pathway to activate vitellogenesis and oocyte maturation that in turn regulates female fecundity

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens

    Get PDF
    Adipokinetic hormones (AKHs) are well known to mobilize lipids and carbohydrates for energy-consuming activities in insects. These neuropeptides exert their functions by interacting with AKH receptors (AKHRs) located on the plasma membrane of fat body cells, which regulates energy mobilization by stimulating lipolysis of triacylglycerols (TAG) to diacylglycerols (DAG) and conversion of glycogen into trehalose. Here, we investigated the roles of AKH/AKHR signaling system in trehalose metabolism and vitellogenesis during female reproduction in the brown planthopper, Nilaparvata lugens. Knockdown of AKHR expression by RNA interference (RNAi) resulted in a decrease of the circulating trehalose in hemolymph and significantly increased levels of two trehalases in fat bodies, indicating that the modulation of hemolymph trehalose levels by AKHR may be mediated by regulating trehalose degradation. In addition, adult females that had been injected with double-stranded RNA (dsRNA) for AKHR exhibited delayed oocyte maturation, prolonged pre-oviposition period, as well as decline in egg number and reduction in fecundity. Considering that these phenotypes resulting from AKHR silencing are similar to those of vitellogenin receptor (VgR) RNAi, we further analyzed a possible connection between AKHR and vitellogenesis. Knockdown of AKHR showed no effects on the Vg synthesis in fat bodies, whereas it significantly reduced the levels of VgR in ovaries. With RNAi-females, we observed an increase of Vg accumulation in hemolymph and a decrease of Vg deposition in ovaries. Moreover, the decrease in VgR expression and Vg incorporation by developing oocytes could be partially rescued by injection of trehalose into AKHR RNAi females. The present study has implicated trehalose in the AKH/AKHR signaling-mediated control of reproduction and provided new insight into mechanisms of AKH/AKHR regulation of trehalose metabolism in insect vitellogenesis, oocyte maturation and fecundity

    TIM-3 Expression Characterizes Regulatory T Cells in Tumor Tissues and Is Associated with Lung Cancer Progression

    Get PDF
    Background: T cell immunoglobulin-3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. TIM-3 is upregulated in exhausted CD8 + T cells in both chronic infection and tumor. However, the nature of TIM-3 +CD4 + T cells in the tumor microenvironment is unclear. This study is to characterize TIM-3 expressing lymphocytes within human lung cancer tissues and establish clinical significance of TIM-3 expression in lung cancer progression. Methodology: A total of 51 human lung cancer tissue specimens were obtained from pathologically confirmed and newly diagnosed non-small cell lung cancer (NSCLC) patients. Leukocytes from tumor tissues, distal normal lung tissues, and peripheral blood mononuclear cells (PBMC) were analyzed for TIM-3 surface expression by flow cytometry. TIM-3 expression on tumor-infiltrating lymphocytes (TILs) was correlated with clinicopathological parameters. Conclusions: TIM-3 is highly upregulated on both CD4 + and CD8 + TILs from human lung cancer tissues but negligibly expressed on T cells from patients' peripheral blood. Frequencies of IFN-γ + cells were reduced in TIM-3 +CD8 + TILs compared to TIM-3 -CD8 + TILs. However, the level of TIM-3 expression on CD8 + TILs failed to associate with any clinical pathological parameter. Interestingly, we found that approximately 70% of TIM-3 +CD4 + TILs expressed FOXP3 and about 60% of FOXP3 + TILs were TIM-3 +. Importantly, TIM-3 expression on CD4 + T cells correlated with poor clinicopathological parameters of NSCLC such as nodal metastasis and advanced cancer stages. Our study reveals a new role of TIM-3 as an important immune regulator in the tumor microenvironment via its predominant expression in regulatory T cells. © 2012 Gao et al

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma.

    No full text
    Lung cancer is one of the deadliest malignancies. The immune checkpoint-blockade (ICB) tumor therapy has led to striking improvement of long-term survival for some lung cancer patients. However, the response rate of immunotherapy is still low for lung cancer. Studying the tumor microenvironment (TME) should shed light on improvement of immunotherapy of lung cancer. Interleukin-33 (IL-33), an "alarmin" cytokine, has been implicated in tumor associated immune responses and inflammatory diseases of the lung. The role of IL-33 in lung cancer progression, however, remains elusive. This study is designed to characterize IL-33 expression in lung tumor tissues and establish the clinical significance of IL-33 in non-small cell lung cancer lung cancer (NSCLC).Tumor tissue specimens from patients suffering from NSCLC were analyzed for expression of IL-33 protein by immunohistochemistry and expression of IL-33 and ST2 mRNA by RT-quantitative PCR (RT-QPCR). The expression data were analyzed for their association with clinical and pathological parameters of NSCLC. In addition, the association between expression levels of IL-33 mRNA and patient survival was determined using 5 independent expression profiling datasets of human lung cancer.The expression levels of IL-33 and ST2 were significantly down-regulated in both adenocarcinoma and squamous cell carcinoma of the lung when compared to adjacent normal lung tissues. In addition, the level of IL-33 protein was inversely correlated with tumor grade and size. Moreover, analysis of TCGA and GEO lung cancer expression datasets revealed that higher expression levels of IL-33 mRNA were correlated with longer overall survival of patients suffering from adenocarcinoma of the lung. These data indicate that the expression levels of IL-33 are inversely associated with lung cancer progression, consistent with the hypothesis that IL-33 is involved in immune surveillance of NSCLC

    Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system

    No full text
    Summary: The type V-K CRISPR-associated transposons (CASTs) allow RNA-guided DNA integration and have great potential as a programmable site-specific gene insertion tool. Although all core components have been independently characterized structurally, the mechanism of how the transposase TnsB associates with AAA+ ATPase TnsC and catalyzes donor DNA cleavage and integration remains ambiguous. In this study, we demonstrate that TniQ-dCas9 fusion can direct site-specific transposition by TnsB/TnsC in ShCAST. TnsB is a 3′-5′ exonuclease that specifically cleaves donor DNA at the end of the terminal repeats and integrates the left end prior to the right end. The nucleotide preference and the cleavage site of TnsB are markedly different from those of the well-documented MuA. We also find that TnsB/TnsC association is enhanced in a half-integration state. Overall, our results provide valuable insights into the mechanism and application expansion of CRISPR-mediated site-specific transposition by TnsB/TnsC
    corecore