40 research outputs found

    Grey matter involvement by focal cervical spinal cord lesions is associated with progressive multiple sclerosis

    Get PDF
    BACKGROUND: The in vivo relationship of spinal cord lesion features with clinical course and function in multiple sclerosis (MS) is poorly defined. OBJECTIVE: The objective of this paper is to investigate the associations of spinal cord lesion features on MRI with MS subgroup and disability. METHODS: We recruited 120 people: 25 clinically isolated syndrome, 35 relapsing-remitting (RR), 30 secondary progressive (SP), and 30 primary progressive (PP) MS. Disability was measured using the Expanded Disability Status Scale. We performed 3T axial cervical cord MRI, using 3D-fast-field-echo and phase-sensitive-inversion-recovery sequences. Both focal lesions and diffuse abnormalities were recorded. Focal lesions were classified according to the number of white matter (WM) columns involved and whether they extended to grey matter (GM). RESULTS: The proportion of patients with focal lesions involving at least two WM columns and extending to GM was higher in SPMS than in RRMS (p = 0.03) and PPMS (p = 0.015). Diffuse abnormalities were more common in both PPMS and SPMS, compared with RRMS (OR 6.1 (p = 0.002) and 5.7 (p = 0.003), respectively). The number of lesions per patient involving both the lateral column and extending to GM was independently associated with disability (p < 0.001). CONCLUSIONS: More extensive focal cord lesions, extension of lesions to GM, and diffuse abnormalities are associated with progressive MS and disability

    MRI Acquisition and Analysis Protocol for In Vivo Intraorbital Optic Nerve Segmentation at 3T

    Get PDF
    Purpose.: To present a new acquisition and analysis protocol for reliable and reproducible segmentation of the entire intraorbital optic nerve (ION) mean cross-sectional area by means of magnetic resonance imaging (MRI) at 3 tesla (T). / Methods.: Eight healthy volunteers (mean age 31, five were male) gave written informed consent and both of their IONs were imaged individually using a coronal-oblique T2-weighted fast multidynamic image acquisition scheme; the proposed acquisition scheme has its rationale in combining separately acquired volumes and registering them to account for motion-related artifacts commonly associated with longer acquisitions. Mean cross-sectional area of each ION was measured using a semiautomated image analysis protocol that was based on an active surface model previously described and used for spinal cord imaging. Reproducibility was assessed for repeated scans (scan-rescan) and repeated image analysis performance (intraobserver). / Results.: Mean and SD values of the left ION cross-sectional area for the eight healthy volunteers were 5.0 (±0.7) mm2 and for the right ION were 5.3 (±0.8) mm2. Mean scan-rescan coefficient of variation (COV) for the left ION was 4.3% and for the right was 4.4%. Mean intraobserver COV for the left ION was 2.1% and for the right was 1.8%. / Conclusions.: This study presents a new MRI acquisition and analysis protocol for reliable and reproducible in vivo measurement of the entire ION mean cross-sectional area as demonstrated in a pilot study of healthy subjects. The protocol presented here can be used in future studies of the ION in disease state

    Grey and White Matter Magnetisation Transfer Ratio Measurements in the Lumbosacral Enlargement: A Pilot In Vivo Study at 3T

    Get PDF
    Magnetisation transfer (MT) imaging of the central nervous system has provided further insight into the pathophysiology of neurological disease. However, the use of this method to study the lower spinal cord has been technically challenging, despite the important role of this region, not only for motor control of the lower limbs, but also for the neural control of lower urinary tract, sexual and bowel functions. In this study, the feasibility of obtaining reliable grey matter (GM) and white matter (WM) magnetisation transfer ratio (MTR) measurements within the lumbosacral enlargement (LSE) was investigated in ten healthy volunteers using a clinical 3T MRI system. The mean cross-sectional area of the LSE (LSE-CSA) and the mean GM area (LSE-GM-CSA) were first obtained by means of image segmentation and tissue-specific (i.e. WM and GM) MTR measurements within the LSE were subsequently obtained. The reproducibility of the segmentation method and MTR measurements was assessed from repeated measurements and their % coefficient of variation (%COV). Mean (± SD) LSE-CSA across 10 healthy subjects was 59.3 (± 8.4) mm2 and LSE-GM-CSA was 17.0 (± 3.1) mm2. The mean intra- and inter-rater % COV for measuring the LSE-CSA were 0.8% and 2.3%, respectively and for the LSE-GM-CSA were 3.8% and 5.4%, respectively. Mean (± SD) WM-MTR was 43.2 (± 4.4) and GM-MTR was 40.9 (± 4.3). The mean scan-rescan % COV for measuring WM-MTR was 4.6% and for GM-MTR was 3.8%. Using a paired t-test, a statistically significant difference was identified between WM-MTR and GM-MTR in the LSE (p<0.0001). This pilot study has shown that it is possible to obtain reliable tissue-specific MTR measurements within the LSE using a clinical MR system at 3T. The MTR acquisition and analysis protocol presented in this study can be used in future investigations of intrinsic spinal cord diseases that affect the LSE

    ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.

    Get PDF
    There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans

    Fast and reproducible in vivo T1 mapping of the human cervical spinal cord

    Get PDF
    PURPOSE: To develop a fast and robust method for measuring T1 in the whole cervical spinal cord in vivo, and to assess its reproducibility. METHODS: A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7 min. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects. RESULTS: Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficient = 0.89 (P value < 0.01); mean difference = 2 ms, 95% confidence interval ± 20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficient = 0.88 (P value < 0.01, confidence interval 0.71-0.95)). CONCLUSIONS: T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol

    Get PDF
    Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS

    The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T.

    Get PDF
    Histopathological studies have demonstrated the involvement of spinal cord grey matter (GM) and white matter (WM) in several diseases and recent research has suggested the use of magnetic resonance imaging (MRI) as a promising tool for in vivo assessment of the upper spinal cord. However, many neurological conditions would benefit from quantitative assessment of tissue integrity at different levels and relatively little work has been done, mainly due to technical challenges associated with imaging the lower spinal cord. In this study, the value of the lumbosacral enlargement (LSE) as an intrinsic imaging biomarker was determined by exploring the feasibility of obtaining within it reliable GM and WM cross-sectional area (CSA) measurements by means of a commercially available MRI system at 3 tesla (T). 10 healthy volunteers (mean age 27.5 years, 6 female) gave written informed consent and high resolution images of the LSE were acquired and analysed using an optimised MRI acquisition and analysis protocol. GM and WM mean CSA measurements were obtained from a 15 mm section at the level of the LSE and the reproducibility of the measurements was determined by means of scan-rescan, intra- and inter-observer assessments. Mean (±SD) LSE cross-sectional area (LSE-CSA) was 62.3 (±4.1) mm2 and mean (±SD) LSE grey matter cross-sectional area (LSE-GM-CSA) was 19.8 (±3.3) mm2. The mean scan-rescan, intra- and inter-observer % coefficient of variation (COV) for measuring the LSE-CSA were 2%, 2% and 2.5%, respectively and for measuring the LSE-GM-CSA were 7.8%, 8% and 8.6%, respectively. This study has shown that the LSE can be used reliably as an intrinsic imaging biomarker. The method presented here can be potentially extended to study the LSE in the diseased state and could provide a solid foundation for subsequent multi-parametric MRI investigations

    Fully automated grey and white matter segmentation of the cervical cord in vivo

    Get PDF
    We propose and validate a new fully automated spinal cord (SC) segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: Optimized PatchMatch Label fusion (OPAL) and Similarity and Truth Estimation for Propagated Segmentations (STEPS). We collaboratively join the advantages of each method to obtain the most accurate SC segmentation. The new method reaches the inter-rater variability, providing automatic segmentations equivalents to inter-rater segmentations in terms of DSC 0.97 for whole cord for any subject

    Atrophy computation in the spinal cord using the Boundary Shift Integral

    Get PDF
    In this work, we introduce a new pipeline based on the latest iteration of the BSI for computing atrophy in the SC and compare its results with the most popular atrophy measurements for this region, mean CSA. We demonstrated for the first time the use of BSI in the SC, as a sensitive, quantitative and objective measure of longitudinal tissue volume change. The BSI pipeline presented in this work is repeatable, reproducible and standardises a pipeline for computing SC atrophy

    Fully automated grey and white matter spinal cord segmentation

    Get PDF
    Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS
    corecore