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Abstract

Histopathological studies have demonstrated the involvement of spinal cord grey matter (GM) and white matter (WM) in
several diseases and recent research has suggested the use of magnetic resonance imaging (MRI) as a promising tool for in
vivo assessment of the upper spinal cord. However, many neurological conditions would benefit from quantitative
assessment of tissue integrity at different levels and relatively little work has been done, mainly due to technical challenges
associated with imaging the lower spinal cord. In this study, the value of the lumbosacral enlargement (LSE) as an intrinsic
imaging biomarker was determined by exploring the feasibility of obtaining within it reliable GM and WM cross-sectional
area (CSA) measurements by means of a commercially available MRI system at 3 tesla (T). 10 healthy volunteers (mean age
27.5 years, 6 female) gave written informed consent and high resolution images of the LSE were acquired and analysed
using an optimised MRI acquisition and analysis protocol. GM and WM mean CSA measurements were obtained from a
15 mm section at the level of the LSE and the reproducibility of the measurements was determined by means of scan-
rescan, intra- and inter-observer assessments. Mean (6SD) LSE cross-sectional area (LSE-CSA) was 62.3 (64.1) mm2 and
mean (6SD) LSE grey matter cross-sectional area (LSE-GM-CSA) was 19.8 (63.3) mm2. The mean scan-rescan, intra- and
inter-observer % coefficient of variation (COV) for measuring the LSE-CSA were 2%, 2% and 2.5%, respectively and for
measuring the LSE-GM-CSA were 7.8%, 8% and 8.6%, respectively. This study has shown that the LSE can be used reliably as
an intrinsic imaging biomarker. The method presented here can be potentially extended to study the LSE in the diseased
state and could provide a solid foundation for subsequent multi-parametric MRI investigations.
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Introduction

Many neurological conditions cause intrinsic pathological

changes in the spinal cord (SC) [1]. Some conditions like

Friedrich’s ataxia (FRDA) and leucodystrophies will only affect

the white matter (WM) tracts of the SC [2,3] while others, such as

amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), will

involve both the grey matter (GM) and WM [4–7]. The variety

and discriminating behaviour of intrinsic SC pathologies has

profound clinical implications; purely GM lesions (sparing

surrounding WM) cause clinical dysfunctions that correspond to

the level of the pathological changes, while WM tract destruction

will lead to motor, sensory and sphincter symptoms below the level

of the damage [8].

Previous research has used cross-sectional area (CSA) measure-

ments of the upper cervical cord, obtained by means of magnetic

resonance imaging (MRI), to assess the degree of atrophy (i.e.

tissue loss, which implies neurodegeneration). This measure has

been significantly correlated with measures of locomotor disability

in people with MS [9–11], while a decline of spinal cord CSA over

time of between 11% and 30% has also been observed in cases of

chronic spinal cord injury (SCI) using similar methodologies [12–

14]. While measuring atrophy and cross-sectional dimensions

provides an index of overall damage to the cord over time, it does

not elucidate between individual rates of tissue (WM and GM) loss,

which may have prognostic implications with respect to both

disease progression rates and response to treatment. The use of

MRI to assess tissue-specific changes within the SC has been

limited due to a number of technical factors relating to resolution,

signal-to-noise ratio (SNR) and motion artefacts, which make it

technically difficult to assess the integrity of the SC in detail [15].

Recent research has shown the potential to segment GM and

WM reliably within the healthy cervical spinal cord [16] but

evidence from ex vivo investigations has shown that loss of somatic

and motor neurons may also occur in the lower spinal cord and

maybe best studied independently when trying to address clinical
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questions [17]. The need to develop new imaging methods to

gauge tissue-specific changes in the lumbar region is therefore

profound, as it would allow important neurological conditions

such as the aforementioned to be studied in detail. However, the

study of the lumbar SC poses additional challenges which merit

investigation in their own right. For example, the cord segments in

the lumbar SC do not correspond consistently with the vertebral

body levels [18,19] and these positional variations of the SC must

be accounted for. In addition, technical considerations such as the

management of patient related and physiological motion, or

identifying the correct balance between image resolution, SNR

and scan time, are all equally important determinants of a

clinically useful imaging protocol.

In this study, a commercially available MR sequence and image

analysis software are utilised in a protocol for GM and WM

segmentation in the lumbar SC, which takes into account the

technical challenges associated with imaging the lumbar SC. One

of the innovative strategies employed in this study is to take into

account the positional variations of the SC through the use of the

lumbosacral enlargement (LSE) as an intrinsic imaging biomarker,

owing to its consistent relationship with the T11 - L1 lumbar SC

segments [20]. Positional variations in the lower SC have been

studied previously in the context of providing important safety

information in spinal anaesthesia for preventing intrathecal

needles from being directed close to the cord, mainly by reporting

the termination level of the conus medullaris [21–23]. The conus

medullaris extends caudally from the LSE and becomes gradually

narrower and thinner. The LSE is a large enough structure that

can be studied reliably with clinically available MR systems. This

work assesses the reproducibility of the proposed MR imaging and

analysis protocol and provides normative data hitherto unreported

in vivo, serving as a foundation for further multi-parametric MR

investigations in the lumbar SC.

Materials and Methods

Study participants
Ten healthy adult volunteers were recruited for the study (mean

age 27.5 years, 6 female, range 21–35). Written informed consent

was obtained from all participants and the work was approved by

the National Hospital for Neurology and Neurosurgery and the

Institute of Neurology Joint Research and NRES Committee

London Bloomsbury (Formally London REC 2 Ethics Commit-

tee).

MR imaging
A 3T Philips Achieva MRI system was used with dual-transmit

technology (Philips Healthcare, Best, Netherlands) using the

manufacturer’s 16-channel neurovascular (NV) coil and 15-

channel SENSE spine coil. Considering previously reported

imaging protocols that offered high image contrast in the upper

spinal cord [16,24], the lumbar SC was imaged in the axial

plane with the slices perpendicular to the cord using a fat-

suppressed 3D slab-selective fast field echo (FFE) sequence and the

following acquisition parameters (for acquisition parameter

optimisation details refer to Appendix S1): Repetition time

(TR) = 23 ms; echo time (TE) = 4.4 ms, flip angle a= 10u, field

of view (FOV) = 1806180 mm2, voxel size = 0.560.565 mm3,

number of averages (NEX) = 8, 19 axial contiguous slices and

scanning time of 19:27 min. The first slice of the imaging volume

was positioned at the superior margin of the T11 vertebral body

with the volume extending minimally to the inferior margin of the

L1 vertebral body to ensure coverage of the LSE in all subjects

(see Figure 1).

Motion artefacts were reduced by using velcro straps to restrain

the torso and through the use of foam padding to reduce

inadvertent movements of the upper neck. Hip flexion was

achieved through the use of a large foam wedge that increased the

level of contact between the lower back and the coil surface. Every

effort was made to ensure the participants were as comfortable as

possible in the scanner.

Image analysis
Image analysis was performed using JIM 6.0 (Xinapse systems,

http://www.xinapse.com). A 15 mm section of the cord (i.e. 3

slices) was extracted and segmented based on previously described

methodologies in the cervical spine [11,16] as follows: Using the

active surface model (ASM) segmentation method, seed points

were manually positioned in the centre of the cord on all axial

slices between T11-L1 and CSA measurements were obtained (see

Figure 2a and 2b). In each subject, the slice with the largest CSA

between T11-L1 was identified and the two adjacent slices were

subsequently included in further analysis. GM segmentation was

done based on a previously reported method [16], predominantly

with the use of the fuzzy connector segmentation [25] available in

Jim 6.0, but with manual editing whenever necessary to obtain the

final GM contour (see Figure 2c and Figure S3). The CSA of WM

(LSE-WM-CSA) was recorded as the difference between LSE-

CSA and LSE-GM-CSA.

Reproducibility assessment
Five out of ten study participants had three repeated scans, each

performed on different occasions (at least one week apart), in order

to test for ‘scan-rescan’ reproducibility; reproducibility was

assessed by one experienced rater analysing all the data. In order

to demonstrate intra-observer reproducibility, the same rater re-

analysed all the data from the 5 volunteers’ first visit 3 times; the

analysis was done on separate occasions with a minimum of 2

weeks between each analysis. Inter-observer reproducibility was

assessed by employing a second and third rater to analyse the data

from the 5 volunteers’ first visit.

Additional measures such us the Dice similarity coefficient

(DSC) [26] and the modified Housdorff distance (MHD) [27] were

also obtained. The DSC is a measurement of spatial overlap

Figure 1. Imaging the lumbosacral enlargement (LSE). The
imaging volume was prescribed to cover from the superior margin of
T11 to the inferior margin of the L1 vertebral bodies so that to ensure
coverage of the LSE in all subjects. Example images are shown from
superior, middle and inferior sections of the imaging volume.
doi:10.1371/journal.pone.0105544.g001
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between two sets and represents the size of the union of two sets

divided by the average size of the two sets; a value of 0 indicates no

overlap while a value of 1 indicates perfect agreement. The MHD

between two sets represents a measure of the distance between

points in one set to the corresponding nearest points in the other

set; lower MHD units (MHDu) indicate better registration.

Statistics
Statistical analysis was performed using SPSS 11.0 (SPSS,

Chicago, Ill., USA). For the assessment of intra- and inter-observer

reproducibility as well as scan-rescan reproducibility, the coeffi-

cient of variation (COV) was calculated using the mean and

standard deviation from the repeated measures and the equation

COV = [SD/mean] 6100%. In order to estimate the measure-

ment error relative to the biological variability between subjects,

the intra-class correlation coefficient (ICC) was calculated.

Results
All the acquired images were included in the analysis and no

data had to be discarded because of motion or other artefacts. The

segmentation of the LSE-CSA was successfully performed using

the ASM method without the need for manual intervention.

However, the segmentation of the LSE-GM-CSA required

manual editing in all cases. Mean (6SD) LSE-CSA of the

15 mm section studied (i.e. 3 slices) across 10 healthy subjects was

62.3 (64.1) mm2 and mean (6SD) LSE-GM-CSA was 19.8 (63.3)

mm2. Figure 3 shows a stacked plot diagram of the mean GM and

WM area fractions measured within the LSE in the 10 healthy

subjects that took part in the study.

The mean scan-rescan, intra- and inter-observer % COV for

measuring the LSE-CSA were 2%, 2% and 2.5%, respectively.

The mean scan-rescan, intra- and inter-observer % coefficient of

variation for measuring the LSE-GM-CSA were 7.8%, 8% and

8.6%, respectively. The ICC for LSE-CSA measurements was

0.76 and for LSE-GM-CSA measurements was 0.87.

Mean (6SD) DSC of the LSE-CSA (0.9760.01) and the LSE-

GM-CSA (0.8960.01) for a single rater (intra-observer) in 5

healthy subjects and the mean DSC of the LSE-CSA (0.9760.01)

and the LSE-GM-CSA (0.8860.01) for 3 raters (inter-observer)

are shown in Figure 4a. Figure 4b shows the intra-observer MHD

of the LSE-CSA (0.1760.07) and the LSE-GM-CSA (0.2160.07)

and the inter-observer MHD of the LSE-CSA (0.1660.02) and the

LSE-GM-CSA (0.2360.04). More details regarding the measure-

ments of each observer and the corresponding similarity

measurements can be found in Table S1, Table S2, Table S3,

and Table S4.

Discussion

In this study we have successfully presented a clinically feasible

MRI protocol for obtaining tissue-specific (i.e. GM and WM) CSA

measurements in the lumbar SC in healthy subjects using

commercially available hardware and software, which has the

potential for immediate clinical utility. The motivation for

pursuing this study was found in the fact that cervical SC atrophy

observed by measuring changes in CSA cross-sectionally and over

time has provided valuable insights into disease state and evolution

in MS and other important neurological conditions [9–14]. To

date there are no clinical studies reporting such changes at lumbar

level and there is little doubt that the development of imaging

Figure 2. Segmentation of the lumbosacral enlargement (LSE) using the active surface model (ASM) method. a) seed points are first
positioned within the cord and b) the boundary of the cord is identified to obtain cross-sectional area (CSA) measurements of the LSE c) the grey
matter (GM) boundary and CSA is also obtained using semi-automated and manual editing techniques.
doi:10.1371/journal.pone.0105544.g002

Figure 3. Stacked plot diagram showing grey matter (GM) and
white matter (WM) mean area fractions measured in a 15 mm
section through the lumbosacral enlargement (LSE) in 10
healthy subjects.
doi:10.1371/journal.pone.0105544.g003

Figure 4. Image segmentation assessment. a) mean Dice similarity
coefficient (DSC) of the lumbosacral enlargement (LSE) cross-sectional
area (LSE-CSA) and the LSE grey matter cross-sectional area (LSE-GM-
CSA) in 5 healthy subjects obtained from a single rater (intra-observer)
and 3 raters (inter-observer) b) mean modified Housdorff distance
(MHD) of the LSE-CSA and the LSE-GM-CSA.
doi:10.1371/journal.pone.0105544.g004
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methods to study the lower SC will provide invaluable information

to better understand the pathophysiology of commonly reported

symptoms relevant to this level of the SC such as bladder and

sexual dysfunction for example, which is a major problem not only

in MS [28,29] but in conditions like spinal cord injury (SCI) [30–

36] and multiple system atrophy (MSA)[37,38]. In MS, bladder

symptoms are often attributed to spinal cord lesions, although in

some cases no obvious lesions are present to account for bladder

problems, raising the possibility that axonal degeneration may also

be occurring in pathways that affect the bladder [28]. It is also

evident that bladder problems in SCI may exist even in patients

with relatively preserved neurological function [30] and medical

imaging has offered very little so far in our understanding of these

symptoms.

A number of hurdles unique to lumbar SC imaging had to be

overcome to achieve these results. Firstly, the anatomical

curvature and variation in this segment of the SC meant that a

reproducible localisation strategy had to be implemented that was

dependant on intrinsic SC markers. The LSE had been shown to

be always located between the T11-L1 vertebral bodies [20] and

as such, coverage of this section was deemed to be a pre-requisite

in the final imaging protocol. The localisation technique further

relied on identifying the widest section of the LSE, which is its

mid-point, and in doing so reliably captured the lumbar segments

of the SC. A minor drawback of this method, albeit unavoidable,

was the requirement of using a sufficiently high number of slices to

ensure coverage of the T11-L1 section with a consequent increase

in the total scan time.

The optimisation of the 3D-FFE sequence parameters to

achieve high image contrast involved the use of a low flip angle

(a= 10u, for reduced T1 weighting) and short TR and TE (22 ms

and 4.4 ms, respectively) for the acquisition of mixed proton

density and T2* weighted images that have been shown to offer

optimum contrast between the tissue types in previous studies of

the cervical SC [16]. The voxel dimensions of 0.5 mm60.5 mm in

plane with a slice thickness of 5 mm was chosen to ensure reduced

in-plane partial volume effects whereas the slice thickness was

appropriate due to less variation in the longitudinal SC axis. In

addition, SNR limitations due to the coil design and scan time

restrictions meant it was not possible to consider acquisitions with

reduced slice thickness. With dedicated coils it may be possible to

increase SNR and improve through-plane resolution by reducing

slice thickness. This would reduce the partial volume effect, which

can affect the sharpness of the GM/WM boundary. Of course,

SNR gain from dedicated coils may also be utilised in order to

reduce the acquisition time and to make this protocol more

acceptable in the clinical setting. In this particular protocol, a high

number of averages was acquired (NEX = 8) in order to boost

SNR. We investigated the option of magnitude averaging by

acquiring 8 separate images to register and average in image-

space, but the low SNR of each acquisition impaired the

registration process, therefore k-space averaging was deemed

appropriate.

Subject immobilization was absolutely essential to avoid

movement artefacts and this was achieved by applying velcro

straps across the torso and through the use of a standard MRI

compatible cervical collar. Optimal positioning was achieved with

the subjects lying flat with their knees bent at a 120 degree angle in

the hip flexed position for improved contact of the lower back with

the surface coil.

The reproducibility results demonstrated a mean scan-rescan,

intra- and inter-observer % coefficient of variation for measuring

the LSE-CSA of 2%, 2% and 2.5%, respectively and for

measuring the LSE-GM-CSA; 7.8%, 8% and 8.6%, respectively.

While there are no identical studies in the literature with which to

directly compare these figures, these results are encouraging

nevertheless as they are comparable to those obtained in the

cervical SC, opening up the possibility to implement the method in

the clinical setting using commercially available hardware.

Horsfield et al. [11] demonstrated intra- and inter-observer COVs

of 0.59% and 1.36%, respectively in cervical SC CSA measure-

ments while Yiannakas et al. [16] have shown cervical SC CSA

intra- and inter-observer COVs of 0.5% and 0.5%, respectively. In

the original study by Losseff et al. [10], the mean scan-rescan

COV was 0.8% in the cervical SC. The results of the present pilot

study are promising and are in keeping with the results seen in the

upper cervical cord CSA, although the small differences observed

may be due to several factors, ranging from coil design differences

and image resolution differences to the diameter of the cord itself,

which has been shown from this study to be smaller in the lumbar

SC than in the cervical SC, measured using similar methodologies

[16].

With respect to GM COVs, the current work yielded values of

7.8%, 8% and 8.6%, respectively, which are different to previously

reported values of 6.5%, 5.4% and 12.7% in the upper cervical SC

[16]. The differences in COVs may be attributable to one, or a

combination of factors such as partial volume effects which have a

greater influence in GM estimation due to the tissue’s smaller

CSA; or the subjective GM segmentation that relied upon

operator judgement rather than an automated process. At present

there is no agreement on an established method for reliable

segmentation of SC GM. The fuzzy connector method is a good

starting point but manual editing was required in all cases.

Although automated GM segmentation software could assist in

improving the consistency of analysis, there would still be errors

due to partial volume effects, which cannot exclude the need for

manual outlining and correction of the masks.

In summary, this study has presented a new MRI acquisition

and analysis protocol that uses the LSE as an intrinsic imaging

biomarker, opening up the possibility of assessing neurological

conditions that may differentially affect GM and WM in the lower

SC. The protocol was developed on a clinical 3T system and is

ready for immediate translation to further in vivo human studies.

Further development will be focused on multi-modal quantitative

MRI analysis and also on developing lumbar SC templates for

registration purposes in view of possible group analysis.

Supporting Information

Appendix S1 Acquisition parameter optimisation.

(DOCX)

Dataset S1 Details of all measurements obtained in the
reproducibility study.

(XLSX)

Figure S1 Imaging protocol optimisation and contrast-
to-noise ratio (CNR) measurements. a) plot demonstrating

the effect of varying the echo time (TE) on grey matter (GM)/

white matter (WM), by keeping the repetition time (TR) and flip

angle constant, and the corresponding images at b) TE = 4.4 ms,

CNR = 5.8 c) TE = 15 ms, CNR = 4.3 d) TE = 26 ms,

CNR = 3.1 e) TE = 37 ms, CNR = 0.5.

(TIFF)

Figure S2 Contrast-to-noise (CNR) calculation method.
a) example of region of interest (ROI) placement within white

matter (WM) and grey matter (GM) on the original image b)

interpolated image for better visualisation.

(TIFF)
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Figure S3 Image segmentation example of the lumbo-
sacral enlargement grey matter cross-sectional area
(LSE-GM-CSA) in two healthy subjects (a-b). Top figures

show the magnified original image, middle figures show the

unedited LSE-GM-CSA contours (in white) and bottom figures

show how these have been edited manually (final contours are

shown in red).

(TIFF)

Table S1 Inter-observer lumbosacral enlargement
cross-sectional area (LSE-CSA) measurements (mm2).
(DOCX)

Table S2 Inter-observer lumbosacral enlargement grey
matter cross-sectional area (LSE-GM-CSA) measure-
ments (mm2).
(DOCX)

Table S3 Mean inter-observer similarity measure-
ments of the lumbosacral enlargement cross-sectional
area (LSE-CSA).

(DOCX)

Table S4 Mean inter-observer similarity measure-
ments of the lumbosacral enlargement grey matter
cross-sectional area (LSE-GM-CSA).

(DOCX)
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