47 research outputs found

    Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia.

    Get PDF
    A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis

    Effects of Dioscorea polystachya \u27yam gruel\u27 on the cognitive function of diabetic rats with focal cerebral ischemia-reperfusion injury via the gut-brain axis

    Get PDF
    © 2020 Pang et al. Published by IMR press. Focal cerebral ischemia-reperfusion injury is closely related to hyperglycemia and gut microbiota imbalance, while gut microbiota contributes to the regulation of brain function through the gut-brain axis. Previous studies in patients with diabetes have found that \u27yam gruel\u27 is a classic medicated diet made from Dioscorea polystachya, increases the content of Bifidobacterium, regulates oxidative stress, and reduces fasting blood glucose levels. The research reported here investigated the effects of \u27yam gruel\u27 on the cognitive function of streptozotocin-induced diabetic rats with focal cerebral ischemia-reperfusion injury and explored the mechanism underlying the role of the gut-brain axis in this process. \u27Yam gruel\u27 was shown to improve cognitive function as indicated by increased relative content of probiotic bacteria, and short-chain fatty acids in the intestinal tract and cerebral cortex reduced oxidative stress and inflammatory response and promotion of the expression of neurotransmitters and brain-derived neurotrophic factor. Thus, it is concluded that \u27yam gruel\u27 has a protective effect on cognitive function via a mechanism related to the gut-brain axis

    Senescence risk score: a multifaceted prognostic tool predicting outcomes, stemness, and immune responses in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) remains a primary cause of cancer mortality globally, necessitating precise prognostic indicators for effective clinical management. Our study introduces the Senescence Risk Score (SRRS), based on several senescence-related genes (SRGs), a potent prognostic tool designed to measure cellular senescence in CRC. The higher SRRS predicts a poorer prognosis, providing a novel and efficient approach to patient stratification. Notably, we found that SRRS correlates with methylation and mutation variations, and increased immune infiltration in the tumor microenvironment, thus revealing potential therapeutic targets. We also discovered an inverse relationship between SRRS and cell stemness, which could have significant implications for cancer treatment strategies. Utilizing bioinformatics resources and machine learning, we identified LIMK1 and WRN as key genes associated with SRRS, further enhancing its prognostic value. Importantly, the modulation of these genes significantly impacts cellular senescence, proliferation, and stemness in CRC cells. In summary, our development of SRRS offers a powerful tool for CRC prognosis and paves the way for novel therapeutic strategies, underscoring its potential in transforming CRC patient management

    Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice

    Get PDF
    Liver fibrosis is an abnormal wound healing response and a common consequence of chronic liver diseases from infection or alcohol/xenobiotic exposure. At the cellular level, liver fibrosis is mediated by trans-differentiation of hepatic stellate cells (HSCs), which is driven by persistent hepatic and systemic inflammation. However, impaired enterohepatic circulation and gut dysbiosis may indirectly contribute to the liver fibrogenesis. The composition of the gut microbiota depends on diet composition and host factors. In this study, we examined chlorophyllin, derived from green pigment chlorophyll, on gut microbiota, the intestinal mucosal barrier, and liver fibrosis. BALB/c mice received carbon tetrachloride through intraperitoneal injection to induce liver fibrosis and chlorophyllin was administrated in drinking water. The effects of chlorophyllin on liver fibrosis were evaluated for (1) survival rate, (2) hepatic morphologic analysis, (3) inflammatory factors in both the small intestine and liver, and (4) gut microbiota. Our results indicate that oral administration of chlorophyllin could attenuate intestinal and hepatic inflammation and ameliorate liver fibrosis. Importantly, oral administration of chlorophyllin promptly rebalanced the gut microbiota, exhibiting down-regulation of the phylum Firmicutes and up-regulation of the phylum Bacteroidetes. In vitro experiments on intestinal epithelial cells showed that chlorophyllin exposure could inhibit NF-κB pathway via IKK-phosphorylation suppression. In conclusion, this study demonstrates potential application of chlorophyllin to regulate the intestinal microbiota and ameliorate hepatic fibrosis

    Forecasting of Wind Energy Generation in Alberta

    No full text
    In this paper, our goal is to build a model for the future wind power generation of Alberta, as Alberta’s wind power capacity is growing, and new wind farms are expected to be built in the near future. An important feature of the wind power data is spatial and temporal correlation. To capture this, we model the wind power generation in Alberta as a spatio-temporal process. We apply the method of Gaussian random fields to analyze the wind power time series of 20 wind farms of Alberta. Following the work of Gneiting et al. [11] , we build several spatio-temporal covariance function estimates with increasing complexity: separable, non-separable symmetric, and non-symmetric. We compare the performance of the models using simple kriging. We also use kriging to demonstrate the performance of the models to forecast the future wind generation for both an existing wind farm and a new farm in Alberta. In the end, we also formulate the mean and variance of the aggregate wind power generation in Alberta

    Japan During the early Cold War, 1949-1963

    No full text
    JPN 470 Thesi

    Doing historical research on a multimedia platform

    No full text

    Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles

    No full text
    An underwater spark is able to induce a cavitation bubble, and this principle has been utilized to make cavitation bubble generators for several decades. In this paper, an improved instrument for generating spark-induced cavitation bubbles is described in detail. The voltage time history inside the instrument is measured to show the working process and principle. Cavitation bubbles are generated by the instrument and recorded by a high-speed camera. The radius time history of the bubble is obtained using an image processing algorithm. The ratio of its minimum radius to its maximum radius reaches ~0.2, which indicates that there is little undissolved gas in the bubble. With the radius time history, the velocity fields around the bubbles were calculated by the 1D continuity flow equation, and the pressure fields were calculated by the 1D Euler equation. One cavitation bubble is chosen and discussed in detail. The velocity and pressure on the bubble interface achieve their maximums (~25 m/s and ~1.2 MPa, respectively) at the same time, when the radius is at its minimum (~1 mm). Some statistical results are also presented to show the effect of the instrument
    corecore