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Senescence risk score: a
multifaceted prognostic tool
predicting outcomes, stemness,
and immune responses in
colorectal cancer
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Shanghai, China, 4Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine,
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Colorectal cancer (CRC) remains a primary cause of cancer mortality globally,

necessitating precise prognostic indicators for effective clinical management.

Our study introduces the Senescence Risk Score (SRRS), based on several

senescence-related genes (SRGs), a potent prognostic tool designed to

measure cellular senescence in CRC. The higher SRRS predicts a poorer

prognosis, providing a novel and efficient approach to patient stratification.

Notably, we found that SRRS correlates with methylation and mutation

variations, and increased immune infiltration in the tumor microenvironment,

thus revealing potential therapeutic targets. We also discovered an inverse

relationship between SRRS and cell stemness, which could have significant

implications for cancer treatment strategies. Utilizing bioinformatics resources

andmachine learning, we identified LIMK1 andWRN as key genes associated with

SRRS, further enhancing its prognostic value. Importantly, the modulation of

these genes significantly impacts cellular senescence, proliferation, and

stemness in CRC cells. In summary, our development of SRRS offers a

powerful tool for CRC prognosis and paves the way for novel therapeutic

strategies, underscoring its potential in transforming CRC patient management.
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1 Introduction

Globally, colorectal cancer (CRC) ranks as the third major cause of

freshly diagnosed cancer and the second major cause of cancer-related

deaths according to GLOBOCAN 2020 estimates (1). Its insidious onset

often results in a late-stage diagnosis, during which time the disease has

typically progressed significantly. Despite significant advancements in

targeted therapy and immunotherapy, the prognosis for CRC remains

gloomy, mainly due to the inability to precisely stratify patients and

limited treatment options (2, 3). Hence, it is imperative to prioritize the

identification and characterization of molecular subtypes of CRC in

order to facilitate more accurate and targeted interventions.

A growing body of research has shed light on the dichotomous role

of cellular senescence in CRC tumorigenesis and development (4–9).

Cellular senescence is thought to prevent tumorigenesis at early stages

(5, 10). However, persist standing senescent cells tend to be important

contributors of the pro-tumorigenic effects, mainly through the

senescence associated secretory phenotype (SASP), as they evolve

over time (11). Thus, senescence is beneficial for tumor clearance in a

short term, but may cause long-term disadvantages and ultimately lead

to tumor progression, which holds the potential to be leveraged

therapeutically if its adverse effects can be well addressed. Despite all

this, quantifying levels of cellular senescence is challenging due to the

lack of universal and specificmarkers (12). As a result, there is an urgent

need to develop reliable methods to evaluate cellular senescence levels.

Recently, there has been a surge of interest in identifying

senescence characteristics by combining with multiple transcriptional

profiles of senescent cells (13–15). Accurately characterizing the level of

cellular senescence in cancer patients is a complex task. Additionally,

given the inconsistent manifestation of cellular senescence in different

stages of disease progression, translating senescence-related

mechanisms into clinical outcomes presents a challenge (16, 17).

Therefore, identifying the level of cellular senescence with clinical

relevance may provide potential biomarkers for prognosis prediction

and therapy guidance. In this study, we propose a Senescence Risk

Score (SRRS) based on several senescence-related genes (SRGs). This

SRRS allows us to stratify CRC patients and assess the effect on

prognosis. In addition, we evaluate the potential of SRRS in

predicting immune treatment response and cell stemness in CRC

patients. Upon defining the SRRS, we identify potential

chemotherapeutic drugs and, through employing machine learning,

delineate two pivotal genes within the SRRS model and validate their

reliability. These findings unveil the intricate interplay of cellular

senescence in CRC and present novel avenues for the development

of therapeutic strategies targeting cellular senescence (18).
2 Materials and methods

2.1 Data and resources

Somatic mutation data (mutation annotation format), RNA-seq

data (transcripts per million), and associated clinical data for CRC (589

samples) were downloaded from the TCGA (The Cancer Genome

Atlas) database using the R package TCGAbiolinks (19) (v. 2.25.3).

Persistent mutations and additional mutation data were collected from
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previously published literatures (20) (Supplemental Table 1).

Expression profiles of immunotherapy cohorts were retrieved

through accession numbers (2016_Ascierto, 2017_Ascierto,

2017_Riaz, 2017_Snyder, 2018_Auslander, 2020_Cho). Information

from two CRC validation cohorts was downloaded from GSE39084

(Gene Expression Omnibus (GEO) database, https://www.ncbi.

nlm.nih.gov/geo/) and GSE38832. Single-cell RNA-seq data were

collected from GSE188711. The 279 senescence-related genes were

collected from the CellAge database (http://genomics.senescence.info/

cells) (14). We collected previously curated gene sets associated with

senescence (Supplemental Table 2) and stemness (Supplemental

Table 3) from the published literature (14, 21–23).
2.2 SRRS score calculation

By performing Cox analysis to screen for prognosis-related genes

in TCGA-CRC(CRC sample with expression data from TCGA) (P <

0.05), we identified 14 beneficial genes (bene-SRGs) and 16

detrimental genes (detri-SRGs). The bene-SRGs include BRCA1,

CHEK1, CSNK1A1, CXCL1, ETS2, GLB1, MAD2L1, NEK4,

PBRM1, PDPK1, PTTG1, SIK1, SRSF1, and WRN. The detri-SRGs

include BCL6, CDKN2A, FASTK, IGFBP3, IRF7, LIMK1, MAPK12,

MECP2, NOTCH3, NOX4, PCGF2, SIN3B, SIX1, SNAI1, UBTD1,

and YPEL3. Using the gene expression data of these genes, we

established the SRRS model to indicate the level of senescence risk

in CRC. Single-sample gene set enrichment analysis (ssGSEA) from

the ‘GSVA’ (v.1.46.0) R package (24) was utilized to calculate the

enrichment scores of bene-SRGs and detri-SRGs. The SRRS for tissue

samples, cancer cell lines, and single cells was calculated as the

difference between the ssGSEA scores of detri-SRGs and bene-SRGs.
2.3 PCA and t-SNE analysis

Principal Component Analysis (25) (PCA) and t-Distributed

Stochastic Neighbor Embedding (26) (t-SNE) were utilized for

dimensionality reduction analysis, enabling the visualization of the

segregation patterns of detri-SRGS and bene-SRGs in TCGA-CRC.
2.4 Survival analysis

The survival differences between the two groups were assessed

through Kaplan-Meier survival curves. The log-rank test was employed

to determine significant differences, with a p-value < 0.05 considered

statistically significant. The survival analyses were conducted using the

R packages ‘survival’ (v.3.4-0) and ‘survminer’ (v.0.4.9).
2.5 Construction of predictive nomogram

To identify independent prognostic indicators for CRC patients,

univariate and multivariate Cox proportional hazards regression

models were conducted using the ‘survival’ R package. A clinical

characteristic with a p-value less than 0.05 was considered
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significantly associated with the survival of CRC patients. The

hazard ratio (HR) with a 95% confidence interval (CI) and

corresponding p-values were visualized using the ‘ggforest’

function. Clinical stage, age, and SRRS were utilized to construct

a predictive nomogram, which allowed for a quantitative

assessment of the prognostic risk for CRC patients. Calibration

curves at 1, 3 and 5 years were drawn to evaluate the predictive

capability of the nomogram. Additionally, the decision curve

analysis (DCA) for 1,3 and 5 years was employed to assess the

net clinical benefits of using SRRS and the predictive nomogram.
2.6 Identification of DNA
methylation-driven genes

The ‘minfi’ (v.1.44.0) R package (27) was utilized for reading and

normalizing DNAmethylation data. The ‘limma’ (v.3.54.0) R package

(28) was applied for the analysis to identify differentially methylated

sites. Furthermore, the differentially methylated sites were mapped to

genes using the Wannovar website (http://wannovar.wglab.org/).
2.7 Enrichment analysis and immune
landscape of SRRS subtypes

The differential analysis between two SRRS subtypes was conducted

using the ‘limma’ R package. We used the ‘clusterProfiler’ (v.4.6.0) R

package (29) to implement the Gene Set Enrichment Analysis (GSEA),

using all genes and their log2 FC (fold changes) as a basis. For the

enrichment analysis, gene sets of ‘c2.cp.kegg.v7.2.symbols’ were

downloaded from the Molecular Signatures Database (MSigDB) and

processed through the GSEA. Additionally, Gene Ontology (30) (GO)

and Kyoto Encyclopedia of Genes and Genomes (31) (KEGG)

enrichment analyses were performed, with a False Discovery Rate

(FDR) of <0.05 indicating significant enrichment. Furthermore, FDR

<0.05 was set to denote significant differences within the KEGG and GO

analyses.To assess the extent of immune cell infiltration, the ‘Xcell’ (32)

(v.1.1.0) and ‘MCPcounter’ (33) (v.1.2.0) algorithms were employed to

quantify immune cell signatures across TCGA-CRC. The ‘estimate’ (34)

(v.1.0.13) R package was used to compute the IMMUNE and

ESTIMATE scores of CRC patients.To better understand the immune

characteristics of the SRRS groups, we compared the gene expression of

major histocompatibility complexes and T-cell stimulators across

different clusters. We also utilized gene expression data and

corresponding response information from six immune therapy

datasets to evaluate the predictive potential of SRRS for immune

therapy responses in CRC patients.The area under the curve (AUC)

values for each cohort were calculated using the ‘ROCR’ (35) (v.1.0-11) R

package. AUC values were visualized using the ‘pROC’ (36) (v.1.18.0) R

package, aiding in the visual interpretation of the model’s performance.
2.8 Single-cell data analysis

The count matrix of CRC single-cell data (GSE188711) was

imported into the ‘Seurat’ (37) (v.4.2.3) R package. Low-quality
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(1): nCount_RNA <1000 or nCount_RNA >20000, and (2)

percent.mt > 5. A total of 19,382 high-quality cells were selected

for subsequent analyses. Following the Seurat tutorial, we carried out

data normalization, cluster identification, and visualization. We

manually annotated cell clusters based on previously reported

markers. The SRRS values were calculated using the algorithm

mentioned above. The t-SNE of single-cell RNA-seq profiles

illustrated the annotated cell types and SRRS expression. To

identify different pathways in CAFs (Cancer-Associated

Fibroblasts) between the high-SRRS and low-SRRS groups, we used

the ‘msigdbr’ R package (v.7.5.1) to get human-related pathways. We

refined each gene set to have only unique genes and removed genes

linked to multiple pathways. Most gene sets kept over 70% of their

genes. Then, using the ‘GSVA’ package (v.1.46.0), we determined the

pathway activity for each cell. With this data, we analyzed the

differences between the two groups using the ‘limma’ R package.

To evaluate cell-to-cell communication within the stromal clusters,

we conducted the analysis using the ‘CellChat’ (38) R package

(version 1.6.1). This provided insight into the incoming

communication patterns of the target cells and outgoing

communication patterns of the secreting cells.
2.9 Messenger RNA expression-based
stemness index calculation

The transcriptional mRNAsi of each CRC sample (ranges from

zero to one) was computed following the method of Malta et al.

using one-class logistic regression machine-learning algorithm

(OCLR) based on pluripotent stem cell samples, which strongly

correlated with stem cell features and could be applied for cell

stemness predictions (39).
2.10 Identification of specific
chemotherapeutic drugs associated
with SRRS

To identify chemotherapeutic drugs uniquely associated with

SRRS, following the exclusion of ineffective drugs, we commenced by

extracting a dataset comprising 179 distinct drugs from the Genomics

of Drug Sensitivity in Cancer (40) (GDSC) database. These drugs were

primed for utilization in predicting chemotherapeutic drug sensitivity.

We proceeded by employing ‘OncoPredict’ (41) (v.0.2), a specialized R

package, to extrapolate each patient’s sensitivity towards the selected

drugs, using a ridge regression model operating on a gene expression

matrix. This enabled us to draw a comparison of the forecasted drug

sensitivities between high-SRRS and low-SRRS groups and pinpoint

drugs with a statistically significant variance (|log2FC|>0.4, p<0.05) in

sensitivity in each groups.Supplementing this, we ventured into

computational drug discovery via the Connectivity Map (CMap)

database (42). Guided by the principle of “signature reversal”, our

aim was to detect drugs that could induce a reversal in gene expression

patterns intricately linked to SRRS. We selected the top 100 genes that

showcased significant differential expression between the high-SRRS
frontiersin.org

http://wannovar.wglab.org/
https://doi.org/10.3389/fimmu.2023.1265911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1265911
and low-SRRS groups, subjecting them to CMap analysis. The resultant

CMap scores, with lower scores denoting a stronger disruptive

potential, permitted us to identify a selection of compounds that

antagonize the gene expression patterns peculiar to SRRS.
2.11 Cell culture and siRNA transfection

The CRC cell line HCT116 was purchased from the American

Type Culture Collection (ATCC, Rockville, MD, USA). HCT116 cells

were cultured in McCoy’s 5A Medium. All cells were supplemented

with 10% fetal bovine serum and 1% penicillin-streptomycin and

cultured in a 5% CO2 incubator at 37°C. Small interfering RNA

(siRNA) against WRN (si-WRN) and LIMK1 (si-LIMK1), as well as

the corresponding negative control (NC), were synthesized by RiboBio

(Guangzhou, China), and the transfection of siRNA into CRC cells was

performed according to the manufacturer’s protocol. After transfection

for 72 hours, the gene knockdown effect was validated using qRT-PCR.

The sequences of siRNAs were as follows: si-WRN (sense 5’–3’:

GTAGAAGTTTCTCGGTATA; si-LIMK1 (sense 5’–3’): TGGCA

AGCGTGGACTTTCA.
2.12 RNA extraction and quantitative real-
time RT-PCR

Total RNA was extracted from HCT116 cell line using TRIzol

reagent (Invitrogen, Carlsbad, CA). cDNA was reverse-transcribed

from 1 µg of RNA using an SYBR® Prime ScriptTM RT-PCR kit

(Takara Biochemicals, Tokyo, Japan), and quantitative PCR was

performed using SYBR Select Master Mix (Roche, Switzerland) and

gene-specific primers on an ABI PRISM® 7500HT Real-Time PCR

System. The thermal cycling conditions were as follows: an initial step

at 95°C for 15 s followed by 40 cycles of 95°C for 5 s and 60°C for 30 s.

Each experiment was performed in a 20-µl reaction volume containing

10 µl of SYBR® Prime Ex TaqTM II (2×), 1 µl of forward primer and

reverse primer (10 µM each), 2 µl of cDNA, and 7 µl of H2O. b-Actin
was used as an internal control. The quantification of the mRNA was

calculated using the comparative Ct (the threshold cycle) method

according to the following formula: Ratio = 2−DDCT = 2−[DCt
(sample)-DCt(calibrator)], where DCt is equal to the Ct of the target

gene minus the Ct of the endogenous control gene (b-actin). The
primers were as follows:WRN(F:5’-CACAGCAGCGGAAATGTCCT-

3’;R:3’-GAGCAATCACTAGCATCGTAACT-5’);LIMK1(F:5’-

CAAGGGACTGGTTATGGTGGC-3 ’ ;R:3 ’-CCCCGTCACC

GATAAAGGTC-5’).
2.13 SA b-gal staining

Senescence-associated b-galactosidase (SA b-gal) activity was

measured using a b-gal staining kit (Biolab, Beijing) at pH 6.0,

following the manufacturer’s instructions. Briefly, the cells were

washed with phosphate-buffered saline (PBS), fixed with 1 ml of

fixative solution for 10-15 minutes at room temperature, and then

incubated overnight at 37°C with the staining solution mix. The
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cells were observed under a microscope to assess the level of cellular

senescence based on the presence of green coloration.
2.14 Colony formation assay

Transfected CRC cells were seeded into 6-well plates at a density

of 100–200 cells per well and incubated for 2 weeks. The cells were

fixed and stained in a dye solution containing 0.1% crystal violet

and 100% methanol. The number of colonies was subsequently

counted and analyzed.
2.15 Cell proliferation

The RTCA xCELLigence system (ACEA Biosciences Inc., The

Netherlands) was used to measure cell proliferation in real-time.

CRC cells were placed at a density of 4000–8000/well, and

E-plates were then transferred to the RTCA instrument for

automated real-time monitoring under standard incubator

conditions. Cell proliferation was monitored every 30 min. After

72 h, the measurement was stopped, and the results were analyzed

using RTCA software and the results were analyzed after an

additional 24 h.
2.16 Tumorsphere formation assay

HCT116 cells (1 × 103 cells/well) were seeded into an ultralow-

attachment 96-well plate with 200ul of sphere-culturing medium

containing serum-free DMEM/F12 medium supplemented with

human re- combinant EGF (20 ng/ml), human recombinant

basic fibroblast growth factor (10 ng/ml), insulin (4 ug/ml), the

optimized serum- free supplement B27, penicillin (500 U/ml), and

streptomycin (500ug/ml). Tumorspheres were observed and

photographed under microscope after 3–5 days of culture.
2.17 Statistical analysis

R software (version 4.2.3) was adopted for statistical analysis.

Prior to any parametric statistical tests, the normality of data

distribution for each group was assessed using the Shapiro-Wilk

test, complemented by visual inspections of histograms. Before

conducting ANOVA, the assumption of homogeneity of variances

across groups was verified using Levene’s test. For comparisons

between two groups, unpaired two-tailed t-tests were applied when

data met the assumptions of normality and homogeneity of

variances; otherwise, the Wilcoxon rank-sum test was employed

as a non-parametric alternative. One-way analysis of variance

(ANOVA) with Tukey’s multiple comparisons tests were used for

multiple group comparisons. The relationships between variables

were estimated with Pearson’s or Spearman’s test. Statistical

significance was set at p < 0.05 (*p < 0.05, **p < 0.01, and

***p < 0.001).
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3 Results

3.1 Construct the SRRS model and
estimate the senescence status

Cellular senescence exhibits a dichotomous nature in colorectal

cancer. We identified 279 SRGs (Supplemental Table 4) from the

CellAge database, employing univariate Cox proportional hazards

regression for CRC prognosis prediction, ultimately pinpointing 14

bene-SRGs and 16 detri-SRGS (Figure 1A). Expression patterns of these

30 SRGs were thoroughly investigated, and we calculated the pairwise

correlation of their expression levels in colorectal cancer, thereby

identifying two clusters of SRG correlations: bene-SRGs showed a

strong positive correlation with other bene-SRGs and a negative

correlation with detri-SRGs, and vice versa (Figure 1B). Utilizing

PCA and tSNE analyses, we discerned that bene-SRGs and detri-

SRGS occupied distinct regions within the CRC landscape (Figures 1D,

E), suggesting potential functional differences or independence.

Accordingly, we employed the ssGSEA to compute the enrichment

scores (ES) for bene-SRGs and detri-SRGS, defining these as indicative

of the positive and negative components of CRC cell senescence. We

further developed SRRS, defined as SRRS = ssGSEA_Score (detri-SRGs)

- ssGSEA_Score (bene-SRGs). By performing ssGSEA on three known

cellular senescence gene sets, we observed a strong correlation between

their ssGSEA scores and SRRS, suggesting the potential of SRRS as a

biomarker for assessing the level of cellular senescence in CRC patients

(Figure 1C). By applying a Consensus Clustering algorithm (43), we

classified 589 TCGA-CRC samples into two clusters based on the

expression profiles of the 30 SRGs, resulting in an optimal k value of 2.

Of these, 303 CRC patients were categorized as Cluster 1, and the

remaining 286 as Cluster 2 (Figure 1F). In prognostic analyses, patients

in Cluster 1 displayed a survival advantage over those in Cluster 2

(Figure 1H; P=0.0017). Furthermore, Cluster 1 exhibited a favorable

prognosis with a significantly lower SRRS compared to Cluster 2

(Figure 1G; p=3.4e-09), suggesting SRRS as a promising prognostic

marker reflective of cellular senescence levels in CRC.
3.2 SRRS has a good predictive
performance in the prognosis of CRC

CRC patients were divided into low-SRRS and high-SRRS groups

based on the median SRRS. Kaplan-Meier survival curves showed that

CRC patients in the low-SRRS group had better clinical outcomes than

those in the high-SRRS group: training set TCGA (p<0.0001), test set

GSE39084 (p=0.03), GSE38832 (p=0.0035), GSE17536 (p=0.047) and

GSE17538 (p=0.0026) (Figure 2A; Supplemental Figure 1B).

Additionally, the receiver operating characteristic (ROC) curves

demonstrated a high degree of accuracy of SRRS in predicting overall

survival (OS) in the training and test sets (Figure 2B; Supplemental

Figure 1C). Furthermore, we have identified three cellular senescence-

related signatures for CRC as proposed by Dai et al., Lv et al., and Yue

et al (44–46). Using the TCGA-CRC database, we compared the time-

dependent AUC values of SRRS with these signatures, and found our

signature to exhibit remarkable performance (Supplemental Figure 1F).

SRRS and life status scatter plots are also presented in the TCGA-CRC
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dataset (Figure 2C). Following adjustment for clinical and pathological

parameters (Exclude CRC patients with missing values in the clinical

data.) such as age, gender, clinical stage, T staging, N staging, and M

staging (Supplemental Figure 1A), multivariable Cox regression analysis

was conducted using TCGA data to further ascertain whether SRRS

accurately predicted the prognosis of CRC patients. The results showed

that SRRS, age, and clinical stage were independent prognostic factors for

OS in the training data set (Figure 2D). To construct a practical clinical

assessment tool to enhance the prediction accuracy of individual CRC

OS, we developed a nomogram incorporating clinical stage, age and

SRRS to predict the 1-year, 3-year, and 5-year OS probabilities in the

TCGA-CRC dataset (Figure 2E). As demonstrated by the calibration

plot, the nomogram performed better in predicting 1-year, 3-year and 5-

year OS than using SRRS alone (Figure 2F; Supplemental Figure 1D). In

the decision curve analysis (47) (DCA) for the corresponding 1-year, 3-

year, and 5-year OS, the nomogram exhibited improved net benefits and

a broader range of threshold probabilities (Figure 2G and

Supplemental Figure 1E).
3.3 High SRRS associated with increased
multi-site mutations and differential
methylation patterns in CRC

To further explore the potential mechanisms through which SRRS

influences the prognosis of CRC patients, we delved into the epigenetic

and genetic differences between the high-SRRS and low-SRRS groups.We

first analyzed the global methylation data available for the TCGA-CRC

cohort (using Illumina 450k chip data) and identified 146 differentially

methylated positions among the patients. These differentially methylated

positions were mapped to 14 genes (Supplemental Table 5) and were

found to be predominantly enriched in pathways related to beta-1,3-

galactosyltransferase (Figure 3A), a classical pathway in cellular

senescence. This provides methylation-level evidence for the reliability

of SRRS in characterizing cellular senescence. Next, we performed a

mutation analysis using the R ‘maftools’ (v.2.14.0) package. We found no

significant differences in the top 20 gene mutations between the high-

SRRS group and the low-SRRS group (Figure 3B). However, we noticed

that the 30 genes that constitute the SRRS model manifested more multi-

mutations in the high-SRRS group (Figure 3D). Upon further

investigation of the mutation data, we found that both the Multi-Copy

Mutation Count and the Multi-Copy Mutation Fraction were higher in

the high-SRRS group than in the low-SRRS group (Figure 3C).

Furthermore, we investigated the differences in various types of

mutations between the high-SRRS and low-SRRS groups, including

Microsatellite Instability (MSI), Assessed Mutations, Persistent

Mutations, Tumor Mutational Burden (TMB), and Clonal Mutations.

Our findings revealed that only Persistent Mutations exhibited a

significant difference between the two groups (p=0.0054) (Figure 3E;

Supplemental Figure 2A). Based on the median number of Persistent

Mutations, we divided the CRC patients into two groups and found that

Persistent Mutations had a significant impact on prognosis (p=0.049)

(Figure 3F), which might be an important factor influencing the

prognostic prediction capability of SRRS. This data provides an in-

depth understanding of the genetic and epigenetic differences associated

with SRRS and their potential roles in determining CRC prognosis.
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3.4 SRRS is related to tumor immune
infiltration and can predict
immunotherapy response

Given that persistent mutations have been reported to sensitize

cancer cells to immunotherapies and continuously drive anti-tumor

immune responses (20), we suspected differences in immune

infiltration between high-SRRS and low-SRRS groups, particularly
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in light of the observed differences in Persistent Mutations. To

investigate this further, we used the R package ‘clusterProfiler’ for

GO enrichment analysis and found that most of the enriched

pathways were related to the cell matrix and cytoskeleton,

potentially reflecting morphological changes in senescence cells

(Figure 4A). We then conducted GSEA to identify differentially

enriched hallmark gene sets between the high-SRRS and low-SRRS

groups. We discovered that genes overexpressed in the high-SRRS
B
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FIGURE 1

Depicting the prognostic implications of 30 SRGs in TCGA-CRC through survival analysis, correlation mapping, and clustering. (A) Univariate Cox
regression analysis of overall survival based on gene expression for 30 prognostic-related SRGs in TCGA-CRC cohort. (B) Heatmap shows a positive
(yellow) and negative (blue) correlation among 30 prognostic-related SRGs in TCGA-CRC cohort. *P < 0.05, **P < 0.01, and ***P < 0.001, as
determined by the Spearman correlation analysis. (C) Pearson correlation analysis of SRRS and ssGSEA scores for three cellular senescence gene
sets. PCA analysis (D) and t-SNE analysis (E) were performed on the bene-SRGs and detri-SRGS. (F) TCGA-CRC samples were divided into two
clusters using Consensus clustering based on 30 prognostic-related SRGs. (G) Differences in the SRRS between Cluster1 (yellow) and Cluster2 (blue).
(H) Kaplan-Meier curves compare overall survival between two clusters, Cluster1 (yellow) and Cluster2 (blue), in the TCGA-CRC cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1265911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1265911
group were enriched in the NF-kappa B signaling pathway and

TGF-beta signaling pathway, consistent with the observed increase

in inflammation during senescence. Overexpressed genes in the

low-SRRS group were primarily enriched in the Cell cycle and some

repair and metabolic pathways, aligning with cell cycle arrest

observed during cellular senescence (Figure 4D). Moreover, the

high-SRRS group was enriched in many pathways related to cell
Frontiers in Immunology 07
adhesion and proliferation, such as Cell adhesion molecules, ECM-

receptor interaction, Focal adhesion, Osteoclast differentiation,

Vascular smooth muscle contraction, etc., which might be related

to cancer cell proliferation and metastasis. In line with our

hypothesis, the high-SRRS group showed significant enrichment

in immune gene sets, such as Th17 cell differentiation, Th1 and Th2

cell differentiation, Natural killer cell-mediated cytotoxicity,
B

C D

E

F G

A

FIGURE 2

Survival analysis and prediction based on SRRS across different CRC datasets. (A) Kaplan-Meier curves compare overall survival between two groups,
low-SRRS group (yellow) and high-SRRS group (blue), in 3 CRC datasets, training set TCGA-CRC (p<0.0001), test set GSE39084 (p=0.03), and test
set GSE38832 (p=0.0035). (B) ROC curve of 1-, 3-, and 5-year survival were also shown in each cohort. (C) The distribution of survival status and
SRRS in TCGA-CRC. The patients were ordered according to the SRRS, shown in the up panel, and the survival status of each patient with a different
SRRS was shown in the middle panel. The SRRS model gene expression value has presented in the lower panel. (D) Multivariate Cox regression
analysis shows clinicopathological parameters associated with OS among CRC subjects in the TCGA-CRC dataset. (E) Nomogram with age, clinical
stage, SRRS for predicting 1-year, 3-year, and 5-year OS among CRC patients. (F) Calibration curves for the 5-year time points. (G) Decision curve
analysis shows predicted 5-year OS among TCGA-CRC patients on the basis of the nomogram, SRRS. ***, p < 0.001.
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Antigen processing and presentation etc. (Supplemental Figure 3C),

suggesting a connection between high SRRS and immune

infiltration. Utilizing the ‘estimate’ algorithm based on TCGA-

CRC transcriptome data, we calculated Stromal scores, Immune

scores, and ESTIMATE scores within malignant tumor tissues. As

displayed, both the Stromal and Immune scores were higher in the

high-SRRS group compared to the low-SRRS group (Figure 4B).

Analysis with ‘MCPcount’ and ‘Xcell’ revealed higher levels of most
Frontiers in Immunology 08
immune cells in the high-SRRS group, except for Th2 cells and mast

cells (Figure 4C). We speculated that SRRS could predict responses

to immunotherapy. After gathering data from six immunotherapy

cohorts, we evaluated the predictive capacity of SRRS using the

AUC. The AUC scores were 0.610, 0.916, 0.625, 0.637, 0.697, and

0.687, reflecting a robust predictive capacity and validating the

potential of SRRS to predict immunotherapy responses (Figure 4F;

Supplemental Tables 6–11). Following this, we explored the
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FIGURE 3

Epigenetic and genetic differences between the high-SRRS and low-SRRS groups. (A) Enrichment analysis of gene ontology (GO) terms for Genes
mapped to DMPs. Heatmap showing the top 20 mutation events (B) and SRRS model gene (D) for individual TCGA-CRC patients in the high-SRRS
and low-SRRS groups, respectively. Bar plots in the top panel represent the TMB of individual patients. Statistical graph of mutation events for each
gene is shown in the left panel. Colors are variant classifications. (C) Differences in single mutations and multiple mutations between the high-SRRS
and low-SRRS groups. (E) Differences in the persistent mutations between the high-SRRS group and low-SRRS group. (F) Kaplan-Meier curves
compare overall survival between the high and low persistent mutation groups in the TCGA-CRC cohort.
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relationship between high-SRRS and low-SRRS groups with

immune checkpoints. We found that the expression levels of

various immune checkpoint genes were higher in the high-SRRS

group (Figure 4E), possibly suggesting immune cells in the high-

SRRS group are likely to exhaust. Correlation analysis of SRRS with

the expression levels of various immune checkpoint genes indicated

that LAYN(R=0.418) is the most probable potential immune
Frontiers in Immunology 09
checkpoint (Figure 4G). Moreover, we examined the relationships

between high-SRRS and low-SRRS groups and major

histocompatibility complexes (MHC) as well as T-cell stimulants

(Supplemental Figures 3A, B). We found that the expression levels

of MHC and T-cell stimulants were higher in the high-SRRS group,

This may indicate a heightened immune response or increased

immune activity in high-SRRS group.
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FIGURE 4

Immune landscape differences between the high-SRRS and low-SRRS groups. (A) Enrichment analysis of gene ontology (GO) terms for differential
genes between high-SRRS and low-SRRS groups. (B) Stromal score, Immune score and ESTIMATE score between high-SRRS and low-SRRS groups.
(C) The landscape of immune cell infiltration between high-SRRS and low-SRRS groups. (D) Enrichment analysis of Kyoto Encyclopedia of Genes
and Genomes (KEGG) terms for differential genes between high-SRRS and low-SRRS groups. (E) Differences in the expression levels of immune
checkpoint genes between high-SRRS and low-SRRS groups. (F) Receiver operating characteristic (ROC) curves of the SRRS in distinguishing
responders and nonresponders to immunotherapy in six different cohorts. AUCs were calculated by ROC analysis and are labeled in the bottom
right. (G) Radar plot showing the correlation between SRRS and the expression levels of immune checkpoint genes.
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3.5 Single-cell analysis reveals stromal cell
dominance and potential prognostic
factors in high-SRRS CRC

To further explore the relationship between SRRS and

immunity at the single-cell level, we obtained single-cell

sequencing data for colorectal cancer from GSE188711. Following

initial cell clustering, we classified cells into immune cells, stromal

cells, and malignant cells. Our findings indicated that stromal cells

scored higher than immune cells and malignant cells scored lowest

(Figure 5A). Additional cell clustering (Figures 5B, C) revealed that

except for Mast cells, Neutrophils, Immature B cells, and

Macrophages, other immune cells generally had high SRRS

scores, consistent with our previous analyses (Figure 5D).

Interestingly, we found that cells with the highest SRRS were

CAFs (Cancer-Associated Fibroblasts). We employed the ‘GSVA’

R package in conjunction with human gene sets extracted from the

‘msigdbr’ R package to assign pathway activity scores to each CAFs.

Subsequently, we analyzed the differential pathways between the

low-SRRS and high-SRRS groups using the ‘limma’ R package. The

most significant differential pathways between the high-SRRS and

low-SRRS groups are MYOGENESIS, PROTEIN_SECRETION,

and EPITHELIAL_MESENCHYMAL_TRANSITION (Figure 5E).

Notably, while the majority of CAFs are derived from resident

fibroblasts (48), evidence suggests that other cell types, including

tumor cells, can undergo the EMT (epithelial-mesenchymal

transition) process and subsequently transform into CAFs (49).

The identification of the EMT pathway in our results underscores

the possibility of such transformations, especially given that

fibroblasts inherently do not undergo EMT. Considering the

established role of CAFs in promoting tumor proliferation and

the potential of tumor cells that have undergone EMT to facilitate

tumor migration (50, 51), we posit that these pathways may be

intricately linked to tumor cell proliferation and metastasis. Cell

communication analysis revealed that cells in the high-SRRS group

had more instances of communication than those in the low-SRRS

group, and CAFs were the most frequently communicating with

other cells (Figure 5F; Supplemental Figures 4A, B). This suggests

that the potential reason for the poor prognosis in patients in the

high-SRRS group could be the proliferation and EMT of CAFs.
3.6 Strong negative correlation between
SRRS and cell stemness in CRC

Prevailing evidence suggests an inverse correlation between

immune infiltration and cell stemness (52, 53). Harnessing the one-

class logistic regression machine-learning algorithm (OCLR) on

TCGA-CRC, we computed the mRNAsi for each sample as a

surrogate marker of cell stemness. In evaluating mRNAsi across a

gradient from low (left) to high (right), a noteworthy aggregation of

high-SRRS predominantly within regions of low mRNAsi was

observed (Figure 6A). Furthermore, a notable inverse correlation

(R=-0.440) emerged between mRNAsi and ImmuneScore derived

from estimate analysis (Figure 6B). Probing deeper into the

relationships between mRNAsi and various immune components—
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calculated with the ‘MCPcounter’ R package—we discovered strong

negative correlations with endothelial cells(R=-0.66, p<0.05), and

fibroblasts(R=-0.73, p<0.05) (Figure 6C). Given our preceding

observations, highlighting elevated SRRS in stromal cells and

intensified immune infiltration in the high-SRRS cohort, we

hypothesized a potential association between SRRS and CRC cell

stemness. A subsequent correlation analysis between SRRS and

mRNAsi indeed unveiled a robust negative correlation (Figure 6D),

intimating SRRS’s capability to predict CRC cell stemness. To further

validate this, we compiled 20 stemness-associated gene sets from

prior research, conducting ssGSEA for each within the TCGA-CRC

context, and followed with a correlation analysis of the ssGSEA scores

and SRRS. A consistent and predominantly strong negative

correlation(R=-0.655) was discerned (Figure 6E), solidifying SRRS’s

predictive ability regarding CRC cell stemness. Importantly, Kaplan-

Meier survival analyses revealed that CRC patients with high

mRNAsi demonstrated superior OS compared to their low

mRNAsi counterparts (Figure 6F).
3.7 Identification of specific
chemotherapeutic drugs associated
with SRRS

Following the exclusion of ineffective drugs (those presenting

NA values in more than 20% of the samples), we obtained a

collection of 179 chemotherapeutic agents from the GDSC2 drug

genomic database for drug sensitivity prediction. Using the

‘OncoPredict’ R package, we employed a ridge regression model

premised on gene expression matrices to predict drug sensitivity for

each patient. We then explored the differences in predicted drug

sensitivity between the high-SRRS and low-SRRS groups. This

analytical approach identified 11 drugs that were statistically

significant (|log2FC|>0.4, p<0.05). Among them, the low-SRRS

group presented seven drugs, including MK−1775, Pevonedistat,

Telomerase Inhibitor IX, Dihydrorotenone, AZD8055, Cytarabine

and PD0325901, while the high-SRRS group identified four drugs,

such as CDK9_5576, Gemcitabine, Sabutoclax and Podophyllotoxin

bromide (Figure 7A). Guided by the principle of “signature reversal,”

we employed CMap data for computational drug discovery,

intending to pinpoint drugs capable of reversing SRRS-associated

gene expression patterns. We selected the top 100 differentially

expressed genes between the high-SRRS and low-SRRS groups for

CMap analysis, and chose the top five lowest drugs as potential drugs

capable of reversing the SRRS-related gene expression pattern. The

results showed that the compounds iloprost, tacrolimus, TTNPB,

arachidonyltrifluoromethane, and imatinib are potential drugs that

can reverse the SRRS-related gene expression pattern (Figure 7B). It

is noteworthy that both the GDSC2-predicted drug MK-1775 and

the Cmap-predicted drug imatinib are tyrosine kinase inhibitors

(TKIs). Tyrosine kinases play a pivotal role in DNA damage

response (54). Inhibiting these kinases can make cancer cells more

susceptible to being killed during treatment, especially when used in

combination with other anticancer drugs. The fact that both

methods pointed towards TKIs underscores the potential relevance

of these drugs in the context of CRC (55).
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3.8 Unveiling the functional influence of
key SRRS genes, LIMK1 and WRN, on CRC
cell phenotypes

A significant challenge for the clinical application of the SRRS

model resides in its extensive genetic composition. To enhance the

feasibility of SRRS gene signatures in prognostic evaluations, we

leveraged four machine learning algorithms to distill key features
Frontiers in Immunology 11
from the comprehensive gene cohort of the SRRS model. We

deployed the least absolute shrinkage and selection operator

(LASSO), support vector machine-recursive feature elimination

(SVM-RFE), random forest and boruta (RFB), and extreme gradient

boosting (XGBoost) methodologies, identifying 17, 10, 18, and 10

pertinent genes (Supplemental Table 12), respectively (Figure 8A).

Commonality emerged in two genes, WRN from bene-SRGs and

LIMK1 from detri-SRGs, which we thus deemed as the hub genes of
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FIGURE 5

Single-cell transcriptomic profiles in the high-SRRS and low-SRRS groups. (A) t-SNE representation of single cells color-coded by major cell type: Malignant,
Stromal, and Immune. Bar plot shows SRRS differences. p-values determined by two-sided Wilcoxon test. (B) DotPlot for marker genes of each subtype in single
cell transcriptomic profiles. (C) t-SNE representation of single cells. (D) t-SNE plot shows SRRS of whole tissue cells. (E) Differences in pathway activities scored
per cell by GSVA between the high-SRRS and low-SRRS stromal cell. (F) The difference in intercellular communication intensity between the high-SRRS and
low-SRRS cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1265911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1265911
the SRRS model. We hypothesized that the differential expression of

LIMK1 and WRN could symbolize the SRRS. Our correlation analysis

substantiated this, revealing a robust positive correlation (R=0.655)

between LIMK1-WRN and SRRS (Figure 8B). In pursuit of

understanding the functions of these two vital SRRS genes within

CRC cells, we established si-LIMK1 and si-WRN CRC cell lines

through siRNA transfection against LIMK1 and WRN, respectively.

Intriguingly, b-galactosidase staining demonstrated that si-LIMK1 cells

showed a lighter staining compared to the negative control (NC),

whereas si-WRN cells were deeply stained (Figure 8C), indicating that
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LIMK1 suppression could curtail cellular senescence, while WRN

reduction could instigate it. Cell proliferation (Figure 8D) and colony

formation (Figures 8F, G) assays yielded further insights: compared to

NC, si-LIMK1 cells manifested a deceleration in proliferation, whereas

si-WRN CRC cells proliferated more swiftly. This insinuates that

LIMK1 knockdown could curtail tumor cell proliferation, while

WRN knockdown could stimulate it. Finally, we gauged the

stemness phenotype of the LIMK1 and WRN knockdown cells via

sphere formation assays. The results unveiled a significant

amplification in both sphere number and size in si-LIMK1 cells
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FIGURE 6

Correlation of SRRS with mRNAsi, immune scores, and overall survival. (A) The overview of correlation between mRNAsi and clinical features as well
as SRRS. (B) Pearson correlation analysis of mRNAsi score and immuneScore. (C) Pearson correlation analysis between the abundance of various
immune cell components in MCPcounter analysis and the SRRS. (D) Pearson correlation analysis between the SRRS and mRNAsi. (E) Pearson
correlation analysis between ssGSEA scores of the stemness-associated gene sets. (F) Kaplan-Meier curves compare overall survival between the
high-SRRS group and low-SRRS group.
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compared to NC, with a concurrent diminution observed in si-WRN

cells (Figures 8E, H). In summary, our functional experiments

demonstrated that inhibiting LIMK1 reduces cellular senescence and

inhibits tumor cell proliferation, while reducing WRN has the opposite

effect, indicating their potential as therapeutic targets.
4 Discussion

The study offers comprehensive insight into the relevance of the

SRRS in CRC, unraveling details of its impacts on cellular senescence,

stemness, immune infiltration, stromal cell activity and drug

sensitivity. Strong associations have been identified between higher

SRRS and worse prognosis in CRC patients, bolstering the credibility

of SRRS as a potent predictor of patient survival rates.

Our results clarify the possible pathways through which SRRS can

affect prognosis in CRC patients, such as its link to increased multi-site

mutations and distinctive methylation patterns. These genetic and

epigenetic modifications are pivotal determinants of cancer cell biology,

manipulating cell proliferation, invasion, and metastasis of the cancer

(56–59). Interestingly, the high-SRRS group exhibits a higher number

of persistent mutations, substantially affecting patient prognosis. The

ongoing nature of these mutations can stimulate anti-tumor immune

responses and increase cancer cells’ sensitivity to the immunotherapy.

A hypothesis is formed suggesting that SRRS can forecast

immunotherapy responses which has been later confirmed through

further investigation.
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Connections are also observed between high SRRS and

amplified immune cell infiltration, consistent with the high

stromal scores and immune scores identified in the high-SRRS

group. Elements such as immune cell infiltration and stromal cell

activity are vital components of the tumor microenvironment,

exerting significant influences on tumor progression and patient

prognosis (60–63). Additionally, this study pinpoints LAYN as a

potential immune checkpoint showing the most significant

correlation with SRRS, sparking further inquiry into the function

of LAYN in CRC and its potential as a therapeutic target (64).

Notably, single-cell RNA analysis shows a preponderance of CAFs

in the high-SRRS group. A surge in CAFs in tumors can drive

cancer progression and metastasis, implying that proliferation and

EMT of CAFs may contribute to the adverse prognosis for patients

in the high-SRRS group.

In view of the stemness of tumor cells tending toward forming

“cold” tumor (65, 66), a strong inverse correlation between SRRS

and cell stemness is also identified from this study, suggesting a role

for SRRS in forecasting CRC cell stemness. Understanding this

correlation can shed light on the behaviors of cancer cells and

possibly guide the identification of novel therapeutic targets for

CRC. Notably, specific chemotherapeutic drugs associated with

SRRS have been pinpointed in this study. Additionally,

exploration was undertaken into the functional influence of two

significant SRRS genes, LIMK1 and WRN, on CRC cell phenotypes,

potentially assisting in the development of personalized treatment

plans for CRC patients based on their SRRS.
B

A

FIGURE 7

Potential drug candidates for different SRRS groups. (A) Drug candidates with potential therapeutic effect for the low-SRRS group or the high-SRRS
group. (B) Candidate drugs with potential therapeutic effect to reverse SRRS-associated gene expression patterns.
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In summary, this research contributes to a broader understanding

of the role and clinical significance of SRRS in CRC, revealing potential

prognostic indicators and therapeutic targets. However, further in-vitro

and in-vivo studies are warranted to validate these findings and to

decipher the mechanistic interactions of SRRS in CRC.
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FIGURE 8

Strategies for key gene selection in SRRS signature, gene knockdown effects on cell proliferation and formation (A) Overview of the strategies employed for
selecting key genes in the SRRS signature to predict Overall Survival (OS) of CRC patients in the TCGA cohort. (B) Pearson correlation analysis illustrating the
relationships between SRRS and the expression levels of WRN and LIMK1, and the difference between these expressions. (C) b-Galactosidase staining of HCT-
116 cells following knockdown of LIMK1 and WRN genes, compared with negative control cells. Scale Bar: 100mm. (D) Proliferation analysis of HCT-116 cells
within the LIMK1 and WRN gene knockdown cell lines, along with the negative control line. (F, G) Examination of colony formation capabilities in LIMK1 and
WRN gene knockdown cells, in contrast to negative control cells. (E) Representative images and (H) counts of cell spheres for LIMK1 and WRN gene
knockdown cells, in comparison with negative control cells. *, p < 0.05; **, p < 0.01; ***, p < 0.001 ****, p < 0.0001; "ns" for "not significant".
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