7,750 research outputs found

    Compressed Sensing Based on Random Symmetric Bernoulli Matrix

    Full text link
    The task of compressed sensing is to recover a sparse vector from a small number of linear and non-adaptive measurements, and the problem of finding a suitable measurement matrix is very important in this field. While most recent works focused on random matrices with entries drawn independently from certain probability distributions, in this paper we show that a partial random symmetric Bernoulli matrix whose entries are not independent, can be used to recover signal from observations successfully with high probability. The experimental results also show that the proposed matrix is a suitable measurement matrix.Comment: arXiv admin note: text overlap with arXiv:0902.4394 by other author

    Minimal sets determining universal and phase-covariant quantum cloning

    Full text link
    We study the minimal input sets which can determine completely the universal and the phase-covariant quantum cloning machines. We find that the universal quantum cloning machine, which can copy arbitrary input qubit equally well, however can be determined completely by only four input states located at the four vertices of a tetrahedron. The phase-covariant quantum cloning machine, which can copy all qubits located on the equator of the Bloch sphere, can be determined by three equatorial qubits with equal angular distance. These results sharpen further the well-known results that BB84 states and six-states used in quantum cryptography can determine completely the phase-covariant and universal quantum cloning machines. This concludes the study of the power of universal and phase-covariant quantum cloning, i.e., from minimal input sets necessarily to full input sets by definition. This can simplify dramatically the testing of whether the quantum clone machines are successful or not, we only need to check that the minimal input sets can be cloned optimally.Comment: 7 pages, 4 figure

    Ultrathin Acoustic Parity-Time Symmetric Metasurface Cloak

    Get PDF
    Invisibility or unhearability cloaks have beenmade possible by using metamaterials enabling light or sound to flow around obstacle without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate transforming cloak. Bending and stretching the coordinate grid in space require stringent material parameters; therefore, small inaccuracies and inevitablematerial losses become sources for unwanted scattering that are decremental to the desired effect.These obstacles further limit the possibility of achieving a robust concealment of sizeable objects from either radar or sonar detection. By using an elaborate arrangement of gain and lossy acousticmedia respecting parity-time symmetry, we built a one-way unhearability cloak able to hide objects seven times larger than the acoustic wavelength. Generally speaking, our approach has no limits in terms of working frequency, shape, or size, specifically though we demonstrate how, in principle, an object of the size of a human can be hidden from audible sound
    corecore