9 research outputs found

    Additional file 1 of Enhancing chemical synthesis: a two-stage deep neural network for predicting feasible reaction conditions

    No full text
    Additional file 1: Figure S1. The label distribution of A reagents and B solvents after data reprocessing. Detailed names of reagents and solvents can be found in the data/reaxys_output/ label_processed directory. Figure S2. The distribution of temperatures in the reaction dataset used in this work. Figure S3. The distribution of yields in the reaction dataset used in this work. Figure S4. The distribution of reactions documented with varying numbers of conditionsin the dataset. Figure S5. The hyperparameter tuning results of the first candidate generation model. Figure S6. The hyperparameter tuning results of the second temperature prediction and ranking model. Table S1. Optimized hyperparameters for the first model. Table S2. Optimized hyperparameters for the second model

    Integrating Chemical Information into Reinforcement Learning for Enhanced Molecular Geometry Optimization

    No full text
    Geometry optimization is a crucial step in computational chemistry, and the efficiency of optimization algorithms plays a pivotal role in reducing computational costs. In this study, we introduce a novel reinforcement-learning-based optimizer that surpasses traditional methods in terms of efficiency. What sets our model apart is its ability to incorporate chemical information into the optimization process. By exploring different state representations that integrate gradients, displacements, primitive type labels, and additional chemical information from the SchNet model, our reinforcement learning optimizer achieves exceptional results. It demonstrates an average reduction of about 50% or more in optimization steps compared to the conventional optimization algorithms that we examined when dealing with challenging initial geometries. Moreover, the reinforcement learning optimizer exhibits promising transferability across various levels of theory, emphasizing its versatility and potential for enhancing molecular geometry optimization. This research highlights the significance of leveraging reinforcement learning algorithms to harness chemical knowledge, paving the way for future advancements in computational chemistry

    Integrating Chemical Information into Reinforcement Learning for Enhanced Molecular Geometry Optimization

    No full text
    Geometry optimization is a crucial step in computational chemistry, and the efficiency of optimization algorithms plays a pivotal role in reducing computational costs. In this study, we introduce a novel reinforcement-learning-based optimizer that surpasses traditional methods in terms of efficiency. What sets our model apart is its ability to incorporate chemical information into the optimization process. By exploring different state representations that integrate gradients, displacements, primitive type labels, and additional chemical information from the SchNet model, our reinforcement learning optimizer achieves exceptional results. It demonstrates an average reduction of about 50% or more in optimization steps compared to the conventional optimization algorithms that we examined when dealing with challenging initial geometries. Moreover, the reinforcement learning optimizer exhibits promising transferability across various levels of theory, emphasizing its versatility and potential for enhancing molecular geometry optimization. This research highlights the significance of leveraging reinforcement learning algorithms to harness chemical knowledge, paving the way for future advancements in computational chemistry

    Analysis of the Reaction Mechanism and Catalytic Activity of Metal-Substituted Beta Zeolite for the Isomerization of Glucose to Fructose

    No full text
    Glucose–fructose isomerization mediated by Sn-BEA is investigated using an extended QM/MM model containing 208 tetrahedral atoms. The isomerization mechanism consists of a sequence of ring-opening, isomerization, and ring-closing processes, consistent with the previously reported experimental observations. In agreement with the experimentally observed kinetic isotope effect, the rate-determining step is found to involve a hydride shift from the C<sub>2</sub> carbon to the C<sub>1</sub> carbon. The apparent activation energy for the rate-limiting step is 22.3 kcal/mol at 343 K. The difference in the reaction barriers for the partially hydrolyzed and the fully coordinated Sn sites was investigated using energy decomposition analysis. It is found that the higher activity of the partially hydrolyzed site comes from the extra flexibility provided by the defect in the lattice. The effect of substituting Sn in the active site by Ti, Zr, V, Nb, Si, and Ge was examined, and it was found that Sn and Zr are metals that result in the lowest reaction barrier for glucose isomerization. By using energy decomposition analysis, two physical properties are shown to contribute to the magnitude of the reaction barrier: the polarizability of the metal atom in the active site and the Brønsted basicity of the oxygen atom bound to the metal atom

    Computational Study of <i>p</i>‑Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H‑BEA

    No full text
    Detailed mechanisms for the synthesis of <i>p</i>-xylene as well as the primary byproducts observed experimentally, 2,5-hexadione and 2,5-dimethyl-3-[(4-methyl-1,3-cyclohexadien-1-yl)­methyl]­furan, from ethylene and 2,5-dimethylfuran (DMF) mediated by H-BEA are obtained using an extended QM/MM model containing 208 tetrahedral atoms. The formation of <i>p</i>-xylene proceeds via Diels–Alder cycloaddition of ethylene and DMF, which is rate-limiting, followed by Brønsted acid-catalyzed dehydration. Secondary addition of DMF to the substrate following the Diels–Alder reaction leads to 2,5-dimethyl-3-[(4-methyl-1,3-cyclohexadien-1-yl)­methyl]­furan. The analysis of the free energies associated with the mechanisms suggests that the secondary addition can be eliminated by introducing <i>n</i>-heptane as an inert solvent to decrease the loading of DMF in the zeolite or by using a weak Brønsted acid site to facilitate the dehydration of the Diels–Alder product, for which the rate is determined by the deprotonation via the conjugate base of the active site. Water formed in the dehydration process can react directly with DMF to form 2,5-hexadione, thereby decreasing the yield of <i>p</i>-xylene. However, the free-energy barriers for the formation of 2,5-heaxdione compared to the Diels–Alder reaction indicate that DMF and 2,5-hexadione will be equilibrated. Therefore, the 2,5-hexadione yield can be minimized by operating at a high conversion of DMF

    Unimolecular Reaction Pathways of a γ‑Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

    No full text
    Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s)

    Experimental and Theoretical Study of <i>n</i>‑Butanal Self-Condensation over Ti Species Supported on Silica

    No full text
    The effects of the coordination environment and connectivity of Ti on the rate of <i>n</i>-butanal self-condensation over Ti-silica catalysts were investigated. Ti was introduced in two ways, either during the synthesis of mesoporous SBA-15 or via grafting onto amorphous silica with a disordered pore structure. The connectivity of Ti was then characterized by XANES, UV–vis, and Raman spectroscopy. For the lowest Ti loadings, the Ti is found to be predominantly in isolated monomeric species, irrespective of the manner of sample preparation, and as the Ti loading is increased, a progressively larger fraction of Ti is present in oligomeric species and anatase nanoparticles. The turnover frequency for butanal condensation decreased monotonically with increasing Ti loading, and the apparent activation energy increased from 60 kJ mol<sup>–1</sup> for monomeric species to 120 kJ mol<sup>–1</sup> for oligomeric species. A kinetic H/D isotope effect was observed over isolated titanol and Ti dimer catalysts suggesting that α-H abstraction is the rate-determining step. This conclusion is supported by theoretical analysis of the reaction mechanism. In agreement with experimental results, the calculated activation barrier for alkanal condensation over a Ti dimer is roughly two times greater than that over Ti-OH sites. The cause for this difference was explained by energy decomposition analysis of the enolate formation step which showed that there is a large energetic penalty for the substrate to distort over the Ti–O–Ti dimer than the Ti-OH monomer
    corecore