4,916 research outputs found

    GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of ∼3×10−8 cm s−1\sim 3\times 10^{-8}~{\rm cm~s^{-1}} or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, VolumeComment: 12 pages, 3 figures, published in The Astrophysical Journa

    Tuning a magnetic Feshbach resonance with spatially modulated laser light

    Get PDF
    We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground and excited molecular states, there exists a band structure of bound states, which can uniquely be characterized by some extra bumps in radio-frequency spectroscopy. With the increasing of coupling strength, the series of bound states will cross zero energy and directly result in a number of scattering resonances, whose position and width can be conveniently tuned by the coupling strength of the laser light and the applied magnetic field (i.e., the detuning of the ground molecular state). In the presence of the modulated laser light, universal two-body bound states near zero-energy threshold still exist. However, compared with the case without modulation, the regime for such universal states is usually small. An unified formula which embodies the influence of the modulated coupling on the resonance width is given. The spatially modulated coupling also implies a local spatially varying interaction between atoms. Our work proposes a practical way of optically controlling interatomic interactions with high spatial resolution and negligible atomic loss.Comment: 9pages, 5figur

    Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity

    Full text link
    The coalescence of a stellar-mass compact object together with an intermediate-mass black hole, also known as intermediate-mass-ratio inspiral, is usually not expected to be a viable gravitational wave source for the current ground-based gravitational wave detectors, due to the generally lower frequency of such source. In this paper, we adopt the effective-one-body formalism as the equation of motion, and obtain the accurately calculated gravitational waveforms by solving the Teukolsky equation in frequency-domain. We point out that high frequency modes of gravitational waves can be excited by large eccentricities of intermediate-mass-ratio inspirals. These high frequency modes can extend to more than 10 Hz, and enter the designed sensitive band of Advanced LIGO and Advanced Virgo. We propose that such kind of highly eccentric intermediate-mass-ratio inspirals could be feasible sources and potentially observable by the ground-based gravitational wave detectors, like the Advanced LIGO and Advanced Virgo.Comment: 16 pages, 16 figures. Class. Quant. Gravity, accepte

    Open or Closed? Technology Sharing, Supplier Investment, and Competition

    Get PDF
    Competing technologies in emerging industries create uncertainties that discourage supplier investments. Open technology can induce supplier investments, but may also lead to intensified future competition. In this paper, we study competing manufacturers’ open-technology strategies. We show that despite the risk of intensifying future competition, open technologies by competing manufacturers may constitute an equilibrium and can indeed induce supplier investments. In addition, we identify a technology-risk-pooling benefit; namely, by opening technologies, competing manufacturers can induce supplier investments in both technologies and later adopt the one preferred by the market. However, manufacturers may also exhibit the prisoner’s dilemma and close their technologies despite the risk-pooling benefit. In this case, there is potential for collaborative technology sharing through cross licensing. Finally, we show that manufacturers may sometimes close their technologies to force supplier investments.This paper has an e-companion at https://doi.org/10.1287/msom.2016.0598
    • …
    corecore