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Tuning a magnetic Feshbach resonance with spatially modulated laser light
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We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular
transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground
and excited molecular states, there exists a band structure of bound states, which can uniquely be characterized
by some extra bumps in radio-frequency spectroscopy. With the increasing of coupling strength, the series of
bound states will cross zero energy and directly result in a number of scattering resonances, whose position and
width can be conveniently tuned by the coupling strength of the laser light and the applied magnetic field (i.e., the
detuning of the ground molecular state). In the presence of the modulated laser light, universal two-body bound
states near zero-energy threshold still exist. However, compared with the case without modulation, the regime
for such universal states is usually small. A unified formula, which embodies the influence of the modulated
coupling on the resonance width is given. The spatially modulated coupling also implies a local spatially varying
interaction between atoms. Our work proposes a practical way of optically controlling interatomic interactions
with high spatial resolution and negligible atomic loss.

DOI: 10.1103/PhysRevA.90.052722 PACS number(s): 34.50.Cx, 34.50.Rk, 67.85.−d

I. INTRODUCTION

Ultracold atoms provides an ideal platform to investi-
gate and simulate many-body problems of condensed-matter
physics, e.g., the Mott insulator transition [1], magnetic phase
transition [2], because of their unprecedented controllability
in purity and interatomic interactions. There are a number of
tools now available to tune the interatomic interactions, such as
magnetic and optical Feshbach resonances, optical lattices, etc.

The magnetic Feshbach resonance—resulting from the
hyperfine coupling between two atomic states (i.e., open
channel) and a molecular state (closed channel) near zero
energy—have been widely used [3,4], allowing the realization
of the long-sought crossover from a molecular Bose-Einstein
condensate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) su-
perfluid and the investigation of interesting few-body physics
such as Efimov effects [5,6].

The interaction between atoms can be also tuned by
laser light near photo-association transition, when two free
atoms couple to an excited molecular state [7–9]. This so-
called optical Feshbach resonance has been experimentally
realized [10,11]. Compared with the magnetic Feshbach
resonance, optical Feshbach resonance could be used to
control the interatomic interaction with high temporal and
spatial flexibility. In addition, the optical transition between
atomic states and molecular states is always available for
most atomic species. Hence, optical Feshbach resonance
becomes crucial to control the interatomic interaction for
alkaline-earth atoms because of the lack of magnetic structure
in their ground states [12–14]. In a recent experiment of
optical Feshbach resonance, optical standing wave is used to
couple atomic and molecular states of 174Yb atoms, leading
to a spatially modulated interaction between atoms [15].
Theoretically, this spatially modulated interatomic interaction
was understood by using a two-channel model [16]. Future
experiments on, e.g., the simulation of Hawking radiation in
cold atoms [17,18], the emission of solitons [19], the dynamics
of BEC collapse [20,21], the localized to delocalized transition

of solitons [22], and the phase separation of Bose and Fermi
gases [23], all resulting from spatially varying interactions,
may benefit from the control of interatomic interactions with
high spatial and temporal resolutions.

However, due to the large light-induced atomic loss, the use
of optical Feshbach resonance is greatly limited. To reduce the
loss, it has been proposed to use alkaline-earth atoms with
narrow intercombination line width [24]. Alternatively, one
may optically control a magnetic Feshbach resonance by using
a bound-to-bound transition between two molecular states
[25–27] or by using a molecular dark state [28]. Experimen-
tally, the shift of the magnetic Feshbach resonance position
and the modification of the two-body s-wave scattering length
due to the bound-to-bound transition have been demonstrated
for both atomic Bose [25,26] and Fermi gases [27], by using
spatially uniform laser light.

In this work, we investigate the optical control of a magnetic
Feshbach resonance by using spatially varying (i.e., standing-
wave-like) laser light, which drives the bound-to-bound
transition between a ground molecular state and an excited
molecular state. This scheme can directly be implemented in
current experiments [25,27] by replacing the uniform laser
light with a standing-wave light. It offers the ability to
tune the interatomic interactions with a spatial modulation
at the submicron level. Compared with the previous spatial
modulation of interatomic interactions with optical Feshbach
resonance [15,16], the major advantage of our scheme is
that the optical induced atomic loss would be significantly
suppressed [25,27]. As a result, our proposal provides a
practical way to experimentally realize spatially modulated
interatomic interactions, for the purpose of simulating related
many-body problems. As we shall see, our scheme also has the
advantage of tuning the width of Feshbach resonances, with a
great flexibility.

The rest of the paper is organized as follows. In the next
section (Sec. II), we introduce the model Hamiltonian and
calculate the energy bands of bound states. The scattering
states are also investigated and a series of scattering resonances
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are obtained. In Sec. III, we present a detailed analysis and
discussion to our results. Section IV is devoted to a summary
of this work.

II. THEORETICAL FRAMEWORK

A. Model Hamiltonian

In the absence of the bound-to-bound molecular transition,
the system can be described by the following atom-molecule
Hamiltonian [29–32],

H = H0a + HIa + Hg + Hag,

H0a =
∑

σ

∫
d�rψ†

σ (�r)

[
−�

2∇2

2m
− μ

]
ψσ (�r),

HIa = U

∫
d�rψ†

↑(�r)ψ†
↓(�r)ψ↓(�r)ψ↑(�r), (1)

Hg =
∫

d �Rφ†( �R)

[
−�

2∇2

2M
− 2μ + vg

]
φ( �R),

Hag = χ

∫
d �R[φ†( �R)ψ↑( �R/2)ψ↓( �R/2) + H.c.],

where H0a and HIa are respectively the kinetic Hamiltonian
and interaction Hamiltonian of atoms with the field operator
ψσ (�r) (σ = ↑,↓); Hg is the Hamiltonian of molecules in their
ground state with the field operator φ( �R) and vg denotes the
energy difference between the molecular state and atomic
state; Hag describes the atom-molecule coupling and models
the conversion between atoms and molecules. The mass of
molecules is twice that of atomic mass M = 2m. μ is the
chemical potential. H.c. denotes the Hermitian conjugate. Note
that we have assumed short-range contact interactions for both
interatomic interaction U (�r − �r ′) = Uδ(�r − �r ′) and atom-
molecule coupling χ ( �R; �r,�r ′) = χδ[ �R − (�r + �r ′)/2]δ(�r − �r ′).

We now consider the molecular bound-bound transition
driven by a standing-wave laser light � cos( �K · �R)/2, where
� is the related Rabi frequency and �K is the wave vector of
the light. By using the field operator φe( �R) for the excited
molecular state and taking the rotating-wave approximation,
we obtain the following two additional terms [25,27] :

He =
∫

d �Rφ†
e ( �R)

[
−�

2∇2

2M
− 2μ + ve − � − i

γ

2

]
φe( �R),

(2)

Hge =
∫

d �R� cos(KX)

2
[φ†( �R)φe( �R) + φ†

e( �R)φ( �R)],

where He is the kinetic Hamiltonian of the excited molecular
state, ve is the energy of the excited state relative to the atomic
state, � is the detuning of the molecular transition, γ describes
the decay of the excited state, and Hge is the coupling between
the ground and excited states through the optical standing
wave. We have assumed that the laser light is applied along
the x direction so that cos( �K · �R) = cos(KX).

In the case of large detuning (� � ve, γ ), we may
safely neglect the decay of the excited molecular state (i.e.,
γ = 0) and eliminate the field operator φe( �R). The coupling
(Hge) between molecular states leads to a Stark energy
shift �2 cos2(KX)/(4�) for the molecular ground state and
consequently we have a modified Hamiltonian for ground-state

molecules,

H̃g=
∫

d �Rφ†
[
−�

2∇2

2M
− 2μ + vg + �2 cos 2(KX)

4�

]
φ( �R).

(3)

It is obvious that the Stark energy shift plays the role of
optical lattices for ground-state molecules [33,34]. By taking a
Fourier transformation, the total Hamiltonian can be rewritten
in momentum space as

H = H0a + HIa + H̃g + Hag,

H0a =
∑
�kσ

(ε�k − μ)C†
�kσ

C�kσ ,

HIa = U
∑
�k,�k′,�q

C
†
�q/2+�k,↑C

†
�q/2−�k,↓C�q/2−�k′,↓C�q/2+�k′,↑,

(4)

H̃g =
∑

�q

(
ε�q
2

− 2μ + vg + �2

8�

)
b+

�q b�q

−
∑

�q

�2

16�
(b†�qb�q+2K + H.c.),

Hag = χ
∑
�k,�q

(b†�qC�q/2−�k,↓C�q/2+�k,↑ + H.c.).

Here ε�k = �k2/2 is the kinetic energy (in the units of m = 1
and � = 1). The above Hamiltonian will be our starting point.
In the following, we will solve the two-particle problem of the
Hamiltonian.

Note that, in the case of large detuning, the molecular
excited state |e〉 does not appear in the above Hamiltonian.
Note also that here the lattice potential only appears for
the ground molecular state, unlike the case of an optical
Feshbach resonance, where the spatial modulation appears in
the atom-molecule coupling χ [16].

B. Two-body bound states

Here we focus on the two-body problem, so the chemical
potential μ = 0. Due to the presence of the lattice potential,
eigenstates can be classified according to quasimomentum q ∈
[−K,K] [note that the period of the lattice in Eq. (3) is half
of the wave length of laser beam]. Hereafter, q and K are
understood as along the x direction unless explicitly specified.
It is expected that the eigenenergy would form a band structure.
The two-body wave function can be written as

|ψ〉 =
∑

n

An|nK + q,g〉 +
∑
n�k

Bn,�k|(nK + q)/2

+ �k, ↑; (nK + q)/2 − �k, ↓〉, (5)

where |nK + q,g〉 is the molecular state with a center-
of-mass momentum nK + q, |(nK + q)/2 + �k, ↑; (nK +
q)/2 − �k, ↓〉 is the state of a pair of atoms with total
momentum nK + q and relative momentum �k and with unlike
spins. The two-particle Schrödinger equation reads

H |ψ〉 = E|ψ〉, (6)
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from which we determine coupled equations for the coeffi-
cients An and Bn,k ,

EAn =
[
εnK+q,g + vg + �2

8�

]
An

− �2

16�
[An+2 + An−2] + χ

∑
�k

Bn,�k,

(7)
EBn,�k = [ε(nK+q)/2−�k,a + ε(nK+q)/2+�k,a]Bn,�k

+U
∑

�k′

Bn�k′ + χAn,

where the molecular kinetic energy εnK+q,g = (nK + q)2/4
and the atomic kinetic energy ε(nK+q)/2±�k,a = [(nK + q)/2 ±
�k]2/2. The above equation demonstrates that the molecular
amplitudes of different momenta An are coupled by the lattice
potential. After eliminating the atomic amplitude Bn,�k , we
obtain,

EAn =
[
εnK+q,g + vg + Zn + �2

8�

]
An

− �2

16�
[An+2 + An−2], (8)

where,

Zn = χ2fn

1 − Ufn

,

fn = ��k
1

E − (ε(nK+q)/2−�k,a + ε(nK+q)/2+�k,a)
.

The bare parameters (χ , U , and vg) need to be renormalized
to real physical observables [27], for example,

vg + Zn → vg0 + Zn0 = vg0 + χ2
0 fn0

1 − U0fn0
, (9)

where

fn0 =
∑

�k

[
1

E − [ε(nK+q)/2−�k,a + ε(nK+q)/2+�k,a]
+ 1

�k2

]

=
∑

�k

[
1

E − [(nK + q)2/4 + �k2]
+ 1

�k2

]

=
√

−E + (nK + q)2/4

4π
.

Detailed expressions for real observables vg0, χ0, and U0 are
given in the next section.

Equation (8) differs from the usual eigenvalue problems in
that the eigenvalue E appears on both sides of the equation.
We can divide the eigenvalue E on both sides of the equation
and obtain,

An = [εnK+q,g + vg0 + Zn0 + �2/(8�)]

E
An

− �2

16�E
[An+2 + An−2]. (10)

The above equation has the form,

|ψ〉 = K(E)|ψ〉, (11)

where the matrix elements of the kernel K(E) depend on
the eigenvalue E. By adjusting E to force the eigenvalues of
the kernel K(E) to be 1, we can solve all the eigenvalues
and eigenvectors numerically. Then, from the molecular
amplitudes (An), one can obtain the atomic amplitudes

Bn,�k = βn

−Eb − [ε(nK+q)/2−�k,a + ε(nK+q)/2+�k,a]
,

where Eb ≡ −E > 0 is the binding energy of the bound state
and

βn ≡ U0χ0fn0An

1 − U0fn0
+ χ0An. (12)

C. Radio-frequency spectroscopy of two-particle bound states

The existence of two-particle bound states may be detected
by the radio-frequency (rf) spectroscopy technique. The
Hamiltonian of the rf process can be written as [35–37]

Vrf = V0

∫
d�r[ψ†

3(�r)ψ↓(�r) + H.c.],

= V0

∑
�q

[C†
�q,3C�q,↓ + H.c.]. (13)

It represents a transition process, where the atoms in the state
|�q, ↓〉 are transferred to a third, unoccupied state |�q,3〉.

Recall that the atomic part of the wave function of a two-
particle bound state is given by

|ψ,a〉 =
∑
n�k

Bn,�k|(nK + q)/2 + �k, ↑; (nK + q)/2 − �k, ↓〉.

(14)

By acting Vrf on this wave function, we obtain,

Vrf|ψ,a〉
= −V0

∑
n�k�q ′

Bn�kC
†
�q ′,3C

†
(nK+q)/2+�k,↑C�q ′,↓C

†
(nK+q)/2−�k,↓|0〉,

(15)
= −V0

∑
n�k

Bn�kC
†
(nK+q)/2−�k,3

C
†
(nK+q)/2+�k,↑|0〉,

which give us the final two-particle state after the rf pulse.
Using Fermi’s golden rule, the transfer strength of the rf
process is given by the following Frank-Condon factor,

�(ω) = 1

C
∑
n,�k

|Bn,�k|2δ
(

ω −
[

(nK + q)2

4
+ �k2 + Eb

])
,

(16)

where the δ function guarantees energy conservation dur-
ing the rf process and C = ∑

n,�k |Bn,�k|2 is the normal-
ization constant. By introducing En = Eb + (nK + q)2/4,
we find that fn0 =

√
Eb + (nK + q)2/4/4π = √

En/4π ,
|Bn�k|2 = β2

n/(En + �k2)2, and C = ∑
n β2

n/[8π
√

En]. The
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Frank-Condon factor can then be rewritten as,

�(ω) =
∑

n

β2
n

4π2C

√
ω − En

ω2
θ (ω − En), (17)

where θ (x) is the Heaviside step function. Therefore, once we
obtain Eb and An, the rf transfer strength can be calculated
straightforwardly.

D. Two-particle scattering states

We now consider the low-energy scattering state with
energy E > 0 and E  K2. Here we focus on the isotropic
s-wave scattering at the quasimomentum q = 0. Without loss
of generality, we assume that the incident wave propagates
along the z direction. The scattering wave function can be
written as

|ψ〉 = |kz, ↑; −kz, ↓〉 +
∑

n

An|nK,g〉

+
∑
n,�k

Bn,�k|nK/2 + �k, ↑; nK/2 − �k, ↓〉, (18)

where the first term on the right-hand side |kz, ↑; −kz, ↓〉
stands for the incident state of two atoms with the total
momentum 0, relative momentum kz and energy E = k2

z .
By substituting the wave function into the two-particle
Schrödinger equation, we obtain,

EAn =
[
εnK,g + vg + �2

8�

]
An − �2

16�
[An+2 + An−2]

+χ
∑

�k
Bm,�k,

EBn,�k = [εnK/2−�k,a + εnK/2+�k,a]Bn,�k

+U
∑

�k′

Bn�k′ + χAn + Uδn,0. (19)

Here, compared with Eq. (7), the extra term Uδn,0 in the last
line comes from the incident state with zero total momentum.

It is important to note that, traditionally, in the absence of
optical lattices the atomic and molecular states are referred
to as the open and closed channels, respectively. In our case
with the lattice potential, this two-channel viewpoint should
be generalized, as the dispersion relation is now folded into
discrete energy bands (i.e., different n). That is, we may
classify any atomic states with a nonzero band index n �= 0
as a closed channel [16]. As a result, with the lattice potential
we are now dealing with a multichannel scattering problem,
instead of the usual two-channel problem. As we shall see
later, this multichannel viewpoint is crucial to understand the
width of scattering resonances.

By adopting the similar strategy of eliminating the atomic
amplitudes Bn,�k as in the bound state calculation, we obtain,

EAn =
[
εnK,g + vg + Zn + �2

8�

]
An

− �2

16�
[An+2 + An−2] + ZnU

χ
δn,0. (20)

After the renormalization, the equation becomes

EAn =
[
εnK,g + vg0 + Zn0 + �2

8�

]
An

− �2

16�
[An+2 + An−2] +

(
Zn0U0

χ0
+ χ0

)
δn,0. (21)

We can solve the above linear equation to obtain the molecular
amplitudes An, and then the atomic amplitudes Bnk through
the expression Bnk = β ′

n/[−(E′
n + �k2)], where E′

n = −E +
(nK)2/4 and

β ′
n = U 2

0 fn0δn,0 + U0x0fn0An

1 − U0fn0
+ x0An + U0δn,0. (22)

E. Spatially modulated interatomic interactions

In coordinate space, the atomic part of the scattering wave
function can be written as,

〈r|ψ,a〉 = eikzz +
∑
n,�k

Bn,�ke
inKX+i�k�r ,

= eikzz +
∑

n

1

(2π )3

∫
d3�k −β ′

n

E′
n + �k2

einKX+i�k�r ,

= eikzz − β ′
0e

i
√

Er

4πr
+

∑
n�=0

−β ′
ne

inKXe−
√

E′
nr

4πr
. (23)

We can see that the wave functions of closed channels (n �= 0)
all exponentially decrease with increasing r . As the incident
energy E → 0, the s-wave scattering amplitude is given by
f0 = −β ′

0/4π , from which we determine the s-wave scattering
length

aeff = −f0 = β ′
0

4π
. (24)

On the other hand, at the short range (r → 0), the atomic part
of the scattering wave function can be expressed as

〈r|ψ,a〉 ∝ 1/r − 1/aloc(X) + o(r), (25)

where o(r) represents a quantity at the same order of magnitude
of r , and aloc(X) can be interpreted as the local s-wave
scattering length. Comparing Eq. (23) with Eq. (25), we obtain
the expression of the local s-wave scattering length [16]

aloc(X) = 1 − ∑
n�=0 Un cos(nKX)/U0

1/aeff − ∑
n�=0 Un|n|K cos(nKX)/U0

, (26)

where

U0 = + β ′
0

4π
, Un = − β ′

n

4π
. (27)

Note that when we construct an effective many-body Hamil-
tonian of our system, the interaction Hamiltonian may be
modeled by using the local scattering length aloc(X) [16],
which is position dependent. Thereby, the lattice potential
gives rise to a spatially modulated interatomic interaction.

III. RESULTS AND DISCUSSION

Taking an ultracold Fermi gas of 40K atoms as
an example [27], at the magnetic Feshbach resonance
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FIG. 1. (Color online) The bound states energy spectrum with
optical coupling �2/16� = 0.0342 (dotted blue lines) and −0.0342
(solid red lines), respectively. The dashed line indicates the lowest
energy of bound states without lattice potential (i.e., �2/16� = 0).

B0 = 202.20 ± 0.02G the background scattering length abg �
174aB (aB is the Bohr radius), the difference in magnetic
momentum of atoms and of ground-state molecules is μag =
2μa − μg � 2μB (μB is the Bohr magneton), and the width of
resonance W � 7.04 ± 0.10G. In the following calculations,
we take the natural units: the mass of atoms m = 1, the
background scattering length abg = 1 and � = 1. Therefore,
energy is measured in units of �

2/ma2
bg . We take the pa-

rameters: B − B0 = −0.6G; � = 2π� × 0.07 GHz; the wave
length of laser λ = 780 nm; the wave vector K = 2π/λ. The
physical observables mentioned earlier are related to the above
experimental parameters by the expressions,

U0 = 4π�
2abg/m,

χ0 = 2�
√

πabgWμag/m, (28)

νg0 = μag(B − B0).

In Fig. 1 we show the bound-state energies. The dotted blue
and solid red lines correspond to the blue (� > 0) and red
detunings (� < 0), respectively. As anticipated, overall the red
detuning gives rise to a lower energy for two-particle bound
states. Figure 2 reports the rf spectroscopy of three lowest
bound states located at quasimomentum q = 0 for different
lattice depths. We find that the smaller binding energy is,
the sharper is rf signal (see the dashed blue line in Fig. 2).
This is because when the binding energy approach zero,
the wave function of bound states extends widely in coor-
dinate space. Accordingly, the wave function in momentum
space will concentrate near zero momentum. So the overlap
of wave functions which gives the Frank-Condon factor
reaches large value near zero energy. Due to the coupling
of different total momenta, for each bound state its atomic
part of the wave-function is a linear superposition of different
components with different total momenta, as shown in Eq. (5).
This results in additional bumps in the rf spectroscopy, see for
example, Eq. (17). Therefore, we may identify the bumps as
a unique characteristic of the energy band structure due to the
lattice potential. With increasing the lattice potential strength,
the bumps becomes more evident. The result of Fig. 2 can be
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FIG. 2. (Color online) The Frank-Condon factor. The dashed
blue, dotted black, and solid red lines in Fig. 2 correspond to bound
states 1, 2, and 3 in Fig. 3(a), respectively [see the three bound states
denoted by arrow heads on the rightmost line of Fig. 3(a)].

directly verified in current cold-atom experiments by using rf
spectroscopy [27,36].

To show the evolution of the energy band structure as a
function of the lattice depth �2/16�, we report E(q = 0) in
Fig. 3. With increasing the lattice depth, in the case of red
detuning (� < 0), more bound states emerge [see Fig. 3(a)],
while in the case of blue detuning (� > 0), the energy of
bound states move upward and crosses zero energy. The
corresponding evolution of the s-wave scattering length is
shown in Fig. 3(b). A resonance occurs in the s-wave scattering
length when the energy of bound state crosses zero energy,
as one may anticipate. However, not all the energy branches
induce resonance when they cross zero energy. In Fig. 3(a),
the wave function of the bound states shown in dotted red
lines is antisymmetric with respect to the momentum nK = 0
(i.e., β ′

n = −β ′
−n), implying β ′

0 = 0. As a result, the s-wave
scattering length aeff = β ′

0/4π = 0 and hence these bound
states do not result in any Feshbach resonance. We note that
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FIG. 3. (Color online) The bound states and their corresponding
Feshbach resonances at the quasimomentum q = 0. (a) gives the
evolution of bound state energies with increasing the lattice depth.
(b) shows the s-wave scattering length (aeff ). The solid red (dashed
blue) lines correspond to the case of � < 0 (� > 0). In (a), the dotted
lines show the energy branches that do not induce resonance when
they cross zero energy.
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TABLE I. The resonance position and width of the five Feshbach
resonances shown in Fig. 3(b) (in units of �

2/ma2
bg). Euni is an energy

scale associated with the regime for universal two-body bound states
[see Eq. (A13) in the Appendix].

No. A B C D E

(�2/16�)0 −1.385 −0.78 −0.3279 0.01399 0.7807
W 0.3526 0.2535 0.1403 0.0045 10.4948
Euni 5.1 × 10−5 3.3 × 10−5 1.1 × 10−5 7.6 × 10−9 0.0046

the resonance induced by a spatially modulated atom-molecule
coupling has been previously discussed in the case of optical
Feshbach resonance [16]. The appearance of a resonance was
similarly found to depend on the symmetry of the bound state.

Different from the case of optical Feshbach resonance [16],
however, in our case the width of the spatial-modulation-
induced resonance varies significantly by changing the depth
of the optical lattice potential. Near resonance, the scattering
length can be written as

aeff = abg

[
1 − W

(�2/16�) − (�2/16�)0

]
, (29)

here [(�2/16�)0] and (W ) are the resonance position and
width. In Table I, we calculate the width of the five Feshbach
resonances shown in Fig. 3(b) (for details see Appendix).
The position of resonance can be obtained through fitting our
numerical data. Generally, the widths of Feshbach resonance
are influenced greatly by the other atomic closed channels
(see Table I). In the absence of optical lattice potential,
the resonance width of 40K atoms near the magnetic field
B0 = 202.20 ± 0.02 is about W ∼ 3.3, in the energy unit
of �

2/ma2
bg . From Table I, we find that, in the presence of

the lattice potential, the resonance width can be one order
of magnitude larger or smaller than that without the lattice
potential. For large blue detuning, the width of resonance
E is extremely large. For red detuning we find that the
width becomes larger with increasing the depth of the optical
coupling |�2/�|. As a result, we can access very wide
Feshbach resonance by choosing the zero-energy bound state
at large lattice depth.

Figure 4 reports the atomic amplitude |β ′
n| near the

Feshbach resonance D and E [see Fig. 3(b)]. The width of the
resonance D is very small. It is a closed-channel-dominated
resonance, in the sense that the atomic amplitudes of closed
channels β ′

n=±2 take the largest value relative to the open
channel (β ′

n=0) [see Fig. 4(a)]. On the contrary, the resonance
E has a very large resonance width and the atomic amplitude
peaks at n = 0.

It is worth noting that although there is a modulated lattice,
universal two-body bound states near zero-energy threshold
still exist (see Appendix), whose energy is approximately
E ∝ −1/a2

eff . However, the universal regime may be extremely
small because of the influence of other atomic closed channels.
In Table I, we calculate an characteristic energy scale Euni for
each resonance, which determines the size of the universal
regime. Only when the energy satisfies |E|  Euni, the
universal expression E ∝ −1/a2

eff is valid (see Appendix).
From Table I, we find that the universal regimes for Feshbach
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FIG. 4. (Color online) The atomic amplitudes as a function of the
band index n near the Feshbach resonances D and E [corresponding
to the two resonances with blue detuning in Fig. 3(b)]. From (a)
for the resonance D, we see that the closed channels (n = ±2) have
the largest amplitudes. Therefore, we interpret the resonance D as
a closed-channel-dominated resonance. On the contrary, (b) for the
resonance E corresponds to a entrance-channel-dominated resonance.

resonances A, B, C, and D are all extremely small. This
explains why we can not see the universal behavior from
Fig. 3. However, the Feshbach resonance E has a relatively
large universal regime compared with others. As a result, the
corresponding energy curve looks like a quadratic parabola
near the Feshbach resonance E.

Figure 5 shows the spatial dependence of the local s-wave
scattering length. It is easy to see that the variation period
of the scattering length aloc(X) is directly determined by the
optical lattice potential. For a weak lattice potential (dashed
line), the variation of the local scattering length follows
a cosine function. The mean value of the local scattering
length is roughly equal to the s-wave scattering length aeff .
For a stronger lattice potential (solid line), although aeff is
nearly the same, the value of the local scattering length
changes drastically, from positive to negative, when the
position X changes. This implies that a reasonably large lattice
potential has crucial effects on spatially modulated interatomic
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FIG. 5. (Color online) The local s-wave scattering length near the
resonance D. The solid and dashed lines have the scattering length
aeff = 12.88abg and aeff = 12.81abg , respectively.
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interactions, similar to what has already been seen in the case
of an optical Feshbach resonance [16]

IV. SUMMARY

In conclusion, we have investigated how to tune a magnetic
Feshbach resonance by using standing-wave laser light that
drives a molecular bound-to-bound transition. The two-particle
bound states and scattering states (or scattering lengths) are
significantly affected by the standing-wave light. A band
structure is formed and a series of zero-energy scattering
states appear. As a result, a number of laser-induced Feshbach
resonances emerge, whose position and width can be tuned
by changing the depth of the standing-wave laser. The
resulting s-wave scattering length near resonance shows a
strong spatial dependence. This provides a tool to control
interatomic interactions and therefore opens a route to study
many interesting many-body physics, for example, the exotic
soliton, spatially inhomogeneous BCS superfluidity or BEC-
BCS crossover, self-trapping of BECs induced by spatially
modulated interatomic interactions.

Our proposed scheme can be directly examined in current
experiments for an ultracold Fermi gas of 40K atoms. Indeed,
the optical control of the interaction between 40K atoms
near the broad Feshbach resonance B0 = 202.20 ± 0.02 has
recently been demonstrated [27] by using a spatially homo-
geneous laser. Our scheme is straightforward to implement
by replacing the homogeneous laser with a standing-wave
laser. The predicted energy band structure and the series of
laser-induced Feshbach resonances could be easily observed
by using the radio-frequency spectroscopy and atomic loss
spectroscopy. We note that our calculations apply to bosonic
systems as well. In that case, the spatially modulated inter-
atomic interaction can be observed through the measurement
of the mean-field energy of BECs [15].
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APPENDIX: UNIVERSAL TWO-BODY BOUND STATES
NEAR ZERO ENERGY

In this Appendix, we show the existence of universal two-
body bound states near zero energy and discuss the size of the
universal regime. At the same time, an explicit formulation for
the resonance width is given.

We start by rewriting Eq. (10) in the form of an eigenequa-
tion:

H [E(λ),λ]|ψ(λ)〉 = E(λ)|ψ(λ)〉, (A1)

where λ ≡ �2/16� denotes the strength of the modulated
lattice. The λ dependence of the Hamiltonian, wave function,
and energy has been explicitly emphasized. The nonzero

matrix elements of the Hamiltonian are

(H )n,n = εnK+q,g + vg0 + Zn0 + 2λ,
(A2)

(H )n,n+2 = (H )n+2,n = −λ.

Let us take the derivative of Eq. (A1) with respect to λ,

∂H

∂E

∂E

∂λ
|ψ〉 + ∂H

∂λ
|ψ〉 + H

∣∣∣∣∂ψ

∂λ

〉
= ∂E

∂λ
|ψ〉 + E

∣∣∣∣∂ψ

∂λ

〉
.

(A3)

By acting 〈ψ | on both sides of the above equation, we obtain,

∂E

∂λ
= 〈ψ | ∂H

∂λ
|ψ〉

1 − 〈ψ | ∂H
∂E

|ψ〉 . (A4)

It is easy to see that the nonzero matrix elements of ∂H
∂λ

are(
∂H

∂λ

)
n,n

= 2,

(
∂H

∂λ

)
n,n+2

=
(

∂H

∂λ

)
n+2,n

= −1. (A5)

Similarly, we have the nonzero matrix element of ∂H
∂E

,
(

∂H

∂E

)
n,n

= ∂Zn0

∂E
= −χ2

0

32π2

1

fn0(1 − U0fn0)2
. (A6)

The denominator in Eq. (A4) is

1 − 〈ψ |∂H

∂E
|ψ〉 = 1 −

∑
n

|An|2 ∂Zn0

∂E
≡ x1 + x2, (A7)

here we have introduced x1 ≡ 1 − ∑
n�=0 |An|2 ∂Zn0

∂E
and x2 ≡

−|A0|2 ∂Z00
∂E

. Using the normalization of wave function
(
∑

n |An|2 = 1), the numerator is

〈ψ |∂H

∂λ
|ψ〉 = 2

∑
n

|An|2 −
∑

n

(AnAn+2 + AnAn−2)

= 2 −
∑

n

(AnAn+2 + AnAn−2) ≡ C(λ). (A8)

Focusing on the case with q = 0, when E → 0−, we know

that ∂Z00
∂E

≈ − χ2
0

8π
1√−E

∝ 1/
√−E diverges, while ∂Zn0

∂E
is finite

for n �= 0 [see Eqs. (A6) and Eq. (9)]. Thus, as long as A0 �= 0,
the denominator is dominated by x2, as the energy approaches
zero, and Eq. (A4) becomes

∂E

∂λ
= C(λ)

x1 + x2
≈ C(0)

x2
≈ C(0)

χ2
0 |A0|2/8π

√−E. (A9)

Here we assume the dependence on λ in C(λ) is weak
and replace C(λ) by C(0) ≡ limE→0C(λ). From the above
equation, we obtain,

E = −d2(λ − λ0)2 = −1/a2
eff, (A10)

where d ≡ 4πC(0)
χ2

0 |A0|2 . Compared with Eq. (29), we find that the

resonance width is given by,

W = 1/d = χ2
0

8π

2|A0|2
C(0)

. (A11)
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Equation (A10) demonstrates that, even in the presence of
the modulated lattice, universal two-body bound states near
zero energy still exist. In the absence of the modulated lattice,
the non-zero wave amplitude is A0 = 1, so C(0) = 2. Using
Eq. (A11), the resonance width is reduced to the two-channel
limit W = χ2

0 /8π ≈ 3.3, in units of �
2/ma2

bg . Thus, the factor
2|A0|2/C(0) embodies the influence of atomic closed channels
on the width. We have calculated the resonance widths near
the five Feshbach resonances, as shown in Table I. For the
resonance E, the wave-function amplitude A0 is large and
the other An has the same sign as A0. As a result, C(0) is
small [see Eq. (A8)]. The large factor 2|A0|2/C(0) results in
a relatively large resonance width. For other resonances, due
to the small A0, the small factor 2|A0|2/C(0) gives a small
resonance width.

The universal regime may be extremely narrow compared
with the two-channel case. From Eq. (A9), the universal

regime is given by the condition

|x1|  |x2| = χ2
0 |A0|2

8π
√−E

, (A12)

so we have

|E|  Euni, (A13)

where Euni ≡ (χ2
0 |A0|2

8π |x1| )2. In Table I, we list the energy scale
Euni near the five zero-energy Feshbach resonances. We find
that the universal regime is extremely small except for the
resonance E. In the two-channel case without the modulated
lattice (|A0| = 1,|x1| = 1), the energy scale Euni = ( χ2

0
8π

)2 =
10.89, which is much larger than the energy scale for the five
resonances (see the bottom line in Table I). In this sense, the
universal regime of Feshbach resonances in the presence of
the modulated lattice is always very small.
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