2,164 research outputs found

    Angular Velocity Analysis of an Epicyclic Gear Train Using Fundamental Circuits and a Block Diagram

    Get PDF
    The prediction of angular velocity is a prerequisite to investigate the power flow and mechanical efficiency of an epicyclic gear train. This paper presents a useful tool, which combines the fundamental circuit and a block diagram, to analyze the angular velocity of an epicyclic gear train. It is a visualized and straightforward method without manipulating tedious kinematic equations, which makes the angular velocity analysis of epicyclic gear trains more simplified. A compound epicyclic gear train used in a synchronous differential device is taken as an example to demonstrate the analysis process of the proposed approach. The velocity ratio of the epicyclic gear train is also derived

    Frontiers of Energy Storage Technologies

    Get PDF
    Energy storage technologies (ESTs) play a crucial role in ensuring energy security and addressing the challenges posed by climate change. They enable us to overcome the mismatch between energy supply and demand caused by the intermittent and unpredictable nature of renewable energy sources. The identification of research frontiers in ESTs has primarily relied on expert experience and has been limited to specific areas of study. However, there is a relative lack of data-driven approaches to identify these frontiers. In this study, we employed an integrated technique combining bibliographic coupling and sliding window analysis to identify the research frontiers in ESTs and understand their evolution over time. Our study reveals 19 research frontiers in ESTs distributed across four knowledge domains: electrochemical energy storage, electrical energy storage, chemical energy storage, and energy storage systems. Among these frontiers, two noteworthy areas are aqueous zinc batteries (AZBs) and two-dimensional transition metal carbon-nitride composites (MXenes). By identifying these research frontiers, our study provides insights into the potential future directions for research and development (R&D) deployment in energy storage technologies

    Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis

    Full text link
    Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders that can be classified on the basis of genetic, clinical, phenotypic features. Genetic lesions such as JAK2 mutations and BCRâ ABL translocation are often mutually exclusive in MPN patients and lead to essential thrombocythemia, polycythemia vera, or myelofibrosis or chronic myeloid leukemia, respectively. Nevertheless, coexistence of these genetic aberrations in the same patient has been reported. Whether these aberrations occur in the same stem cell or a different cell is unclear, but an unstable genome in the HSCs seems to be the common antecedent. In an effort to characterize the underlying genetic events that might contribute to the appearance of more than one MPN in a patient, we studied neoplastic cells from patients with dual MPNs by nextâ generation sequencing. We observed that most patients with two MPNs harbored mutations in genes known to contribute to clonal hematopoiesis through altered epigenetic regulation such as TET2, ASXL1/2, SRSF2, and IDH2 at varying frequencies (1%â 47%). In addition, we found that some patients also harbored oncogenic mutations in N/KRAS, TP53, BRAF, EZH2, and GNAS at low frequencies, which probably represent clonal evolution. These findings support the hypothesis that hematopoietic cells from MPN patients harbor multiple genetic aberrations, some of which can contribute to clonal dominance. Acquiring mutations in JAK2/CALR/MPL or the BCRâ ABL translocation probably drive the oncogenic phenotype towards a specific MPN. Further, we propose that the acquisition of BCRâ ABL in these patients is frequently a secondary event resulting from an unstable genome.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136751/1/ajh24728.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136751/2/ajh24728_am.pd

    Identification of subtype-specific metastasis-related genetic signatures in sarcoma

    Get PDF
    Background: Sarcomas are heterogeneous rare malignancies constituting approximately 1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics. Method: We identified prognostic biomarkers of sarcomas by integrating clinical information and RNA-seq data from TCGA and GEO databases. In addition, results obtained from cell cycle, cell migration, and invasion assays were used to assess the capacity for Tanespimycin to inhibit the proliferation and metastasis of sarcoma. Results: Sarcoma samples (N = 536) were divided into four pathological subtypes including DL (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic sarcomas), and MFS (myxofibrosarcoma). RNA-seq expression profile data from the TCGA dataset were used to analyze differentially expressed genes (DEGs) within metastatic and non-metastatic samples of these four sarcoma pathological subtypes with DEGs defined as metastatic-related signatures (MRS). Prognostic analysis of MRS identified a group of genes significantly associated with prognosis in three pathological subtypes: DL, LMS, and UPS. ISG15, NUP50, PTTG1, SERPINE1, and TSR1 were found to be more likely associated with adverse prognosis. We also identified Tanespimycin as a drug exerting inhibitory effects on metastatic LMS subtype and therefore can serve a potential treatment for this type of sarcoma. Conclusions: These results provide new insights into the pathogenesis, diagnosis, treatment, and prognosis of sarcomas and provide new directions for further study of sarcoma

    Submicron full- color LED pixels for microdisplays and micro- LED main displays

    Full text link
    We demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display.We demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display. We then consider collective effects of arrays of such LEDs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/1/jsid899_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/2/jsid899.pd

    Adjustment of the GRACE score by HemoglobinA1c enables a more accurate prediction of long-term major adverse cardiac events in acute coronary syndrome without diabetes undergoing percutaneous coronary intervention

    Get PDF
    Background: The Global Registry of Acute Coronary Events (GRACE) risk score is widely recommended for risk assessment in patients with acute coronary syndrome (ACS). Chronic hyperglycemia [hemoglobinA1c (HbA1c)] can independently predict major adverse cardiac events (MACEs) in patients with ACS. We investigated whether the prediction of MACEs with the GRACE score could be improved with the addition of HbA1c content in ACS patients without diabetes mellitus (DM) undergoing percutaneous coronary intervention (PCI). Methods: We enrolled 549 ACS patients without DM who underwent PCI. The GRACE score and HbA1c content were determined on admission. Correlation was analyzed by Spearman's rank correlation. Cumulative MACE curve was calculated using the Kaplan-Meier method. Multivariate Cox regression was used to identify predictors of MACEs. Additionally, the predictive value of HbA1c content alone and combined with GRACE score was estimated by the area under the receiver-operating characteristic curve (AUC), continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results: During a median of 42.3 months (interquartile range 39.3-44.2 months), 16 (2.9 %) were lost to follow-up, and patients experienced 69 (12.9 %) MACEs: 51 (9.6 %) all-cause deaths and 18 (3.4 %) nonfatal myocardial infarction cases. The GRACE score was positively associated with HbA1c content. Multivariate Cox analysis showed that both GRACE score and HbA1c content were independent predictors of MACEs (hazard ratio 1.030; 95 % CI 1.020-1.040; p < 0.001; 3.530; 95 % CI 1.927-6.466; p < 0.001, respectively). Furthermore, Kaplan-Meier analysis demonstrated increased risk of MACEs with increasing HbA1c content (log-rank 33.906, p < 0.001). Adjustment of the GRACE risk estimate by HbA1c improved the predictive value of the GRACE score [increase in AUC from 0.75 for the GRACE score to 0.80 for the GRACE score plus HbA1c, p = 0.012; IDI = 0.055, p < 0.001; NRI (> 0) = 0.70, p < 0.001]. Conclusions: HbA1c content is positively associated with GRACE risk score and their combination further improved the risk stratification for ACS patients without DM undergoing PCI.National Natural Science Foundation of China [91339116, 81400181]; National Natural Science Fund for Distinguished Young Scholars of China [81025002]; National Basic Research Program of China ("973 Project") [2012CB517804]SCI(E)[email protected]

    Case report: Reoperative parathyroidectomy for large ectopic hyperplastic parathyroid in the mediastinum of a patient with recurrent secondary hyperparathyroidism

    Get PDF
    IntroductionSecondary hyperparathyroidism (SHPT) is a common complication in hemodialysis patients with chronic renal failure uremia. For severe SHPT, parathyroidectomy is effective. Owing to the variability in parathyroid anatomy, surgical parathyroidectomy can be complex and many patients experience recurrent SHPT, which may require repeated surgery. These cases pose significant challenges to surgeons.Case descriptionAn elderly woman with recurrent severe SHPT was admitted to our hospital. Preoperative methoxyisobutylisonitrile (MIBI) examination found a large ectopic parathyroid gland in the superior mediastinum, and she underwent reoperative parathyroidectomy. A large parathyroid gland in the right anterior mediastinum and another parathyroid gland in the left lingual lobe of the thymus were removed. The patient had postoperative hypocalcemia that was successfully corrected with calcium supplementation via femoral vein catheterization. During the 1-year postoperative follow-up, the patient's iPTH was well controlled and her blood calcium was within the normal range.ConclusionWe report a case of parathyroidectomy to remove multifocal ectopic hyperplastic parathyroid tissue in the mediastinum. Preoperative MIBI accurately detected the lesions. Calcium supplementation via femoral vein catheterization successfully corrected postoperative hypocalcemia. Postoperative follow-up for 1 year indicated that the surgery was successful

    The Designer Antimicrobial Peptide A-hBD-2 Facilitates Skin Wound Healing by Stimulating Keratinocyte Migration and Proliferation

    Get PDF
    Background/Aims: Antimicrobial peptides are effective promoters of wound healing but are susceptible to degradation. In this study, we replaced the GIGDP unit on the N-terminal of the endogenous human antimicrobial peptide hBD-2 with APKAM to produce A-hBD-2 and analyzed the effect on wound healing both in vitro and in vivo. Methods: The effects of A-hBD-2 and hBD-2 on cytotoxicity and proliferation in keratinocytes were assessed by Cell Counting Kit-8 assay. The structural stability and antimicrobial activity of hBD-2 and A-hBD-2 were evaluated against Staphylococcus aureus. RNA and proteins levels were evaluated by real-time PCR and western blotting, respectively. Cell migration was evaluated using a transwell assay. Cell cycle analysis was performed by flow cytometry. Wound healing was assessed in Sprague-Dawley rats. Epidermal thickness was evaluated by hematoxylin and eosin staining. Results: We found that hBD-2 exhibited cytotoxicity at high concentrations and decreased the structural stability in the presence of high sodium chloride concentrations. A-hBD-2 exhibited increased structural stability and antimicrobial activity, and had lower cytotoxicity in keratinocytes. A-hBD-2 increased the migration and proliferation of keratinocytes via phosphorylation of EGFR and STAT3 and suppressed terminal differentiation of keratinocytes. We also found that A-hBD-2 elicited mobilization of intracellular Ca2+ and stimulated keratinocytes to produce pro- and anti-inflammatory cytokines and chemokines via phospholipase C activation. Furthermore, A-hBD-2 promoted wound healing in vivo. Conclusion: Our data suggest that A-hBD-2 may be a promising candidate therapy for wound healing
    • …
    corecore