221 research outputs found

    The Stable Association of Virion with the Triple-geneblockProtein 3-based Complex of Bamboo mosaic virus

    Get PDF
    The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membraneprotein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that isdelivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemicalextraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membranetopology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specificimmunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP),replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specificimmunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. Thisnotion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition,mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement byenhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cellto-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membranecomplex and recruitment of TGBp1 to the PD by this complex

    Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an epigenetic regulator, the transcriptional intermediary factor 1β (TIF1β)/KAP1/TRIM28) has been linked to gene expression and chromatin remodeling at specific loci by association with members of the heterochromatin protein 1 (HP1) family and various other chromatin factors. The interaction between TIF1β and HP1 is crucial for heterochromatin formation and maintenance. The HP1-box, PXVXL, of TIF1β is responsible for its interaction with HP1. However, the underlying mechanism of how the interaction is regulated remains poorly understood.</p> <p>Results</p> <p>This work demonstrates that TIF1β is phosphorylated on Ser473, the alteration of which is dynamically associated with cell cycle progression and functionally linked to transcriptional regulation. Phosphorylation of TIF1β/Ser473 coincides with the induction of cell cycle gene <it>cyclin A2 </it>at the S-phase. Interestingly, chromatin immunoprecipitation demonstrated that the promoter of <it>cyclin A2 </it>gene is occupied by TIF1β and that such occupancy is inversely correlated with Ser473 phosphorylation. Additionally, when HP1β was co-expressed with TIF1β/S473A, but not TIF1β/S473E, the colocalization of TIF1β/S473A and HP1β to the promoters of <it>Cdc2 </it>and <it>Cdc25A </it>was enhanced. Non-phosphorylated TIF1β/Ser473 allowed greater TIF1β association with the regulatory regions and the consequent repression of these genes. Consistent with possible inhibition of TIF1β's corepressor function, the phosphorylation of the Ser473 residue, which is located near the HP1-interacting PXVXL motif, compromised the formation of TIF1β-HP1 complex. Finally, we found that the phosphorylation of TIF1β/Ser473 is mediated by the PKCδ pathway and is closely linked to cell proliferation.</p> <p>Conclusion</p> <p>The modulation of HP1β-TIF1β interaction through the phosphorylation/de-phosphorylation of TIF1β/Ser473 may constitute a molecular switch that regulates the expression of particular genes. Higher levels of phosphorylated TIF1β/Ser473 may be associated with the expression of key regulatory genes for cell cycle progression and the proliferation of cells.</p

    Antialiasing attention spatial convolution model for skin lesion segmentation with applications in the Medical IoT

    Get PDF
    This study presents a noninvasive visual sensing enhancing system for skin lesion segmentation. According to the Skin Cancer Foundation, skin cancer kills more than two people every hour in the United States, and one in every five Americans will develop the disease. Skin cancer is becoming more popular, so the need for skin cancer diagnosis is increasing, particularly for melanoma, which has a high metastasis rate. Many traditional algorithms, as well as a computer-aided diagnosis tool, have been implemented in dermoscopic images for skin lesion segmentation to meet this need. However, the accuracy of the model is low, and the prognosis time is lengthy. This paper presents antialiasing attention spatial convolution (AASC) to segment melanoma skin lesions in dermoscopic images. Such a system can enhance the existing Medical IoT (MIoT) applications and provide third-party clues for medical examiners. Empirical results show that the AASC performs well when it is able to overcome dermoscopic limitations such as thick hair, low contrast, or shape and color distortion. The model was evaluated strictly under many statistical evaluation metrics such as the Jaccard index, Recall, Precision, F1 score, and Dice coefficient. The performance of the AASC was trained and tested. Remarkably, the AASC model yielded the highest scores in both three databases compared with the state-of-the-art models across three datasets: ISIC 2016, ISIC 2017, and PH2

    Brain Metastasis of Ovarian Epithelial Carcinoma

    Get PDF
    corecore