11,100 research outputs found

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Invisible Higgs Decay at the LHeC

    Full text link
    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this letter we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet and large missing energy. With a cut-based parton level analysis, we estimate that if the hZZhZZ coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1\,\mbox{ab}^{-1} the LHeC with the proposed 60 GeV electron beam (with βˆ’0.9-0.9 polarization) and 7 TeV proton beam is capable of probing Br(hβ†’E ⁣ ⁣ ⁣ ⁣/T)=6%\mathrm{Br}(h\rightarrow E\!\!\!\!/_T)=6\% at 2Οƒ2\sigma level. Good lepton veto performance (especially hadronic Ο„\tau veto) in the forward region is crucial to the suppression of the dominant WjeWje background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in precision study of new resonances after their discovery in hadron-hadron collisions.Comment: 6 pages, 3 figures. Description of the backgrounds, analysis and results is simplified. Results unchanged with respect to v2. References update

    Three Dimensional Imaging of the Nucleon and Semi-Inclusive High Energy Reactions

    Get PDF
    We present a short overview on the studies of transverse momentum dependent parton distribution functions of the nucleon. The aim of such studies is to provide a three dimensional imagining of the nucleon and a comprehensive description of semi-inclusive high energy reactions. By comparing with the theoretical framework that we have for the inclusive deep inelastic lepton-nucleon scattering and the one-dimensional imaging of the nucleon, we summarize what we need to do in order to construct such a comprehensive theoretical framework for semi-inclusive processes in terms of three dimensional gauge invariant parton distributions. After that, we present an overview of what we have already achieved with emphasize on the theoretical framework for semi-inclusive reactions in leading order perturbative QCD but with leading and higher twist contributions. We summarize in particular the results for the differential cross section and the azimuthal spin asymmetries in terms of the gauge invariant transverse momentum dependent parton distribution functions. We also briefly summarize the available experimental results on semi-inclusive reactions and parameterizations of transverse momentum dependent parton distributions extracted from them and make an outlook for the future studies.Comment: 20 pages, 7 figure

    Exotic Higgs Decay h→ϕϕ→4bh\rightarrow\phi\phi\rightarrow 4b at the LHeC

    Full text link
    We study the exotic decay of the 125 GeV Higgs boson (hh) into a pair of light spin-0 particles (Ο•\phi) which subsequently decays and results in a 4b4b final state. This decay mode is well motivated in the Next to Minimal Supersymmetric Standard Model (NMSSM) and extended Higgs sector models. Instead of searching at the Large Hadron Collider (LHC) and the High Luminosity Large Hadron Collider (HL-LHC) which are beset by large Standard Model (SM) backgrounds, we investigate this decay channel at the much cleaner Large Hadron Electron Collider (LHeC). With some simple selection cuts this channel becomes nearly free of background at this epep machine, in stark contrast with the situation at the (HL-)LHC. With a parton level analysis we show that for the Ο•\phi mass range [20,60]GeV[20,60]GeV, with 100 fbβˆ’1100\,fb^{-1} luminosity the LHeC is generally capable of constraining C4b2≑κV2Γ—Br(h→ϕϕ)Γ—Br2(Ο•β†’bbΛ‰)C_{4b}^2\equiv\kappa_{V}^2\times\text{Br}(h\rightarrow\phi\phi)\times\text{Br}^2(\phi\rightarrow b\bar{b}) (ΞΊV\kappa_{V} denotes the hVV(V=W,Z)hVV(V=W,Z) coupling strength relative to the SM value) to a few percent level (95%95\% CLs). With 1 abβˆ’11\,ab^{-1} luminosity C4b2C_{4b}^2 at a few per mille level can be probed. These sensitivities are much better than the HL-LHC performance and demonstrate the important role expected to be played by the LHeC in probing exotic Higgs decay processes, in addition to the already proposed invisible Higgs decay channel.Comment: 10 pages, 5 figures. Version accepted by EPJC. Tables and figures updated after correcting a mistake in signal event generation. Results essentially unchange

    Pair Production of Scalar Dyons in Kerr-Newman Black Holes

    Full text link
    We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3_3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the JJ-, QQ- and PP-pictures respectively based on the threefold dyonic KN/CFTs dualities.Comment: 12 pages, 3 figures, revtex4. arXiv admin note: text overlap with arXiv:1607.0261
    • …
    corecore