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We present a short overview of studies of the transverse-momentum-dependent parton distribution
functions of the nucleon. The aim of such studies is to provide three-dimensional imaging of the nu-
cleon and a comprehensive description of semi-inclusive high-energy reactions. By summarizing what
we have done in constructing the theoretical framework for inclusive deep inelastic lepton–nucleon
scattering and one-dimensional imaging of the nucleon, we try to sketch out an outline of what we
need to do to construct such a comprehensive theoretical framework for semi-inclusive processes in
terms of three-dimensional gauge-invariant parton distributions. Next, we present an overview of
what we have already achieved, with an emphasis on the theoretical framework for semi-inclusive
reactions in leading-order perturbative quantum chromodynamics but with leading and higher twist
contributions. We summarize in particular the results for the differential cross section and azimuthal
spin asymmetries in terms of the gauge-invariant transverse-momentum-dependent parton distribu-
tion functions. We also briefly summarize the available experimental results on semi-inclusive reac-
tions and the parameterizations of transverse-momentum-dependent parton distributions extracted
from them and present an outlook for future studies.
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1 Introduction

In the ongoing intensive study of the nucleon struc-
ture, three-dimensional imaging has become the frontier
and has been a hot topic in recent years. It is commonly

∗Special Topic: Spin Physics (Eds. Haiyan Gao & Bo-Qiang Ma).

recognized that three-dimensional imaging reveals much
more abundant physics of the nucleon structure and
the properties of quantum chromodynamics (QCD). The
study of three-dimensional imaging was initially trig-
gered by the experimental finding of striking single-
spin asymmetries (SSAs) in inclusive hadron production
in hadron–hadron collisions with transversely polarized
hadrons [1]. Gradually it grew into a field aiming at a
comprehensive three-dimensional description of the nu-
cleon structure, including the spin and transverse mo-
mentum dependence.

One-dimensional imaging of the nucleon is provided
by the parton distribution functions (PDFs) such as the
number density q(x), helicity distribution Δq(x), and
transversity δq(x) for quarks of different flavors in the
nucleon. These one-dimensional PDFs can be studied
in inclusive high-energy reactions and are necessary for
the description of such inclusive processes. The three-
dimensional case, in which the parton transverse momen-
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tum is also considered, involves not only direct exten-
sions of these distribution functions to include the trans-
verse momentum dependence, but also many other cor-
relation functions that describe in particular the correla-
tions between the transverse momenta and spins, such as
the Sivers function, Boer–Mulders function, and pretze-
locity. They are generally called transverse-momentum-
dependent (TMD) PDFs. Moreover, higher twist effects
also become important and need to be considered consis-
tently. The content of the studies is therefore much more
abundant and more interesting. These TMD PDFs can
be studied in semi-inclusive reactions and are necessary
for the description of such processes.

The study of three-dimensional imaging of the nucleon
is in the rapidly developing stage, and it is not easy to
provide a comprehensive overview of all the different as-
pects of the studies. Here, we choose to arrange the re-
view as follows: First, we will briefly review what we have
done in constructing the theoretical framework in one-
dimensional case with inclusive deep inelastic lepton–
nucleon scattering (DIS). In this way, we hope that we
can sketch out the main line of what we need to do in the
three-dimensional case. Next, we will try to follow this
line and summarize the progress already achieved along
this direction and what we need to do next. This brief
review of the one-dimensional case will be presented in
Section 2. In Section 3, we will summarize the TMDs
defined via the quark–quark correlator. In Section 4, we
will present a brief overview of the available informa-
tion for constructing the theoretical framework of semi-
inclusive processes. In Section 5, we will summarize the
available experimental results and TMD parameteriza-
tions extracted from them. Finally, we will summarize
this review in Section 6.

This overview article is an extended version of a ple-
nary talk at the 21st International Symposium on Spin
Physics (Spin2014) [2]. It is clear that the simplest and
most basic picture is at the leading order (LO) in per-
turbative QCD (pQCD) and at the leading twist. Hence,
there are also two major directions in theoretical de-
velopments toward a comprehensive description of semi-
inclusive processes: taking higher-order pQCD into ac-
count and considering higher twist contributions. These
contributions are important not only for higher accu-
racy but also for consistency. The major advances that
have been made in recent years have also followed one
of these two directions, i.e., either at the leading twist
but leading and higher order in pQCD or in the LO in
pQCD but leading and higher twists. The talk [2] concen-
trated mainly on the second direction. For higher-order
pQCD contributions involving the evolution of PDFs, an
overview talk was presented by Daniel Boer at the same

conference [3]. There are also many other reviews and
monographs (e.g., [4, 6, 7]). The study of higher orders
in pQCD and higher twists seems to be rather difficult,
and even the factorization properties are unclear [5]. In
this article, we follow the same line as in the talk [2]
but briefly summarize progress in the studies on QCD
evolution and refer interested readers to those reviews.

2 Inclusive DIS & one-dimensional imaging of
the nucleon

Our studies on the structure of a fast-moving nucleon
started with inclusive DIS such as e− + N → e− + X .
We recall that, under the one-photon exchange approx-
imation, the differential cross section is given by the
Lorentz contraction of the well-known leptonic tensor
Lμν(l, l′, λl) and the hadronic tensor Wμν(q, p, S), i.e.,

dσ =
2α2

em

sQ4
Lμν(l, l′, λl)Wμν(q, p, S)

d3l′

2El′
. (2.1)

The leptonic tensor is calculable and is given by

Lμν(l, l′, λl) = 2(lμl′ν + lν l
′
μ − gμν l · l′) + i2λlεμνρσl

ρqσ.

(2.2)

Information on the structure of the nucleon is contained
in the hadronic tensor, which is defined as

Wμν(q, p, S) =
1
2π

∑

X

〈p, S |jμ(0)|X〉〈X |jν(0)| p, S〉

×(2π)4δ4(p+ q − pX). (2.3)

Here, l and p denote the four-momenta of the lepton
and nucleon, respectively, and primes indicate the final
states; λ stands for the helicity, and S is the polariza-
tion vector of the nucleon. We use light-cone coordinates
and define the light-cone unit vectors as n̄ = (1, 0,�0⊥),
n = (0, 1,�0⊥), and n⊥ = (0, 0, �n⊥), so a general four-
vector can be decomposed as Aμ = A+n̄μ +A−nμ +Aμ

⊥,
where A± = (A0 ± A3)/

√
2, and A⊥ = (0, 0, �A⊥). We

work in the center-of-mass frame of γ∗N and choose the
nucleon’s momentum as being in the z direction, so p

and S are decomposed as

pμ = p+n̄μ +
M2

2p+
nμ, (2.4)

Sμ = λ
p+

M
n̄μ + Sμ

T − λ
M

2p+
nμ. (2.5)

The Bjorken variable is defined as xB = Q2/(2p · q), q =
−xBp

+n̄+nQ2/(2xBp
+); we also define y = (p ·q)/(p · l).

The theoretical framework for inclusive DIS has been
constructed in the following steps. First, we studied the
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kinematics and obtained the general form of the hadronic
tensor by applying the basic constraints from the gen-
eral symmetry requirements such as Lorentz covariance,
gauge invariance, parity conservation, and Hermiticity,
e.g.,

qμWμν(q, p, S) = 0, (2.6)

Wμν(q̃, p̃,−S̃) = Wμν(q, p, S), (2.7)

W ∗
μν(q, p, S) = Wνμ(q, p, S), (2.8)

where Ã denotes the results of A after space reflection,
i.e., Ãμ = Aμ. The general form of the hadronic tensor
is given by the sum of a symmetric part and an antisym-
metric part,

Wμν(q, p, S) = W (S)
μν (q, p) + iW (A)

μν (q, p, S), (2.9)

where W (S)
μν (q, p) and W (A)

μν (q, p, S) are given by

W (S)
μν (q, p) = 2(−gμν +

qμqν
q2

)F1(x,Q2)

+
1
xQ2

(qμ + 2xpμ)(qν + 2xpν)F2(x,Q2), (2.10)

W (A)
μν (q, p, S) =

2Mεμνρσq
ρ

p · q
×

[
Sσg1(x,Q2) + (Sσ − S · q

p · q p
σ)g2(x,Q2)

]
, (2.11)

respectively. We found that the hadronic tensor is deter-
mined by four independent structure functions, F1, F2,
g1, and g2, where the first two describe the unpolarized
case, and the latter two are needed for polarized cases.

Our knowledge of one-dimensional imaging of the nu-
cleon starts with the “intuitive parton model”, which is
very nicely formulated, e.g., in Ref. [8]. Here, it was ar-
gued that, in a fast-moving frame, because of time dila-
tion, quantum fluctuations such as vacuum polarizations
can exist for quite a long time. In the infinite momen-
tum frame, such fluctuations exist forever. In this case,
a fast-moving nucleon can be viewed as a beam of free
“partons”. The probability of the scattering of an elec-
tron with a nucleon is taken as the incoherent sum of that
of the scattering with each individual parton, more pre-
cisely, as a convolution of the number density of partons
in the nucleon with the probability of scattering with the
parton, i.e.,

|M(eN → eX)|2 =
∑

q

∫
dxfq(x)|M̂(eq → eq)|2,

(2.12)

where fq(x) is the number density of partons of flavor
q in the nucleon. In this way, we obtained the famous
results [8]

Fig. 1 Examples of the Feynman diagram series with multiple
gluon scattering considered for γ∗ + N → q + X with (a) j = 0,
(b) j = 1 and (c) j = 2 gluons exchanged.

F2(x,Q2) = 2xF1(x,Q2) =
∑

q

e2qxfq(x), (2.13)

g1(x,Q2) =
∑

q

e2qΔfq(x), (2.14)

g1(x,Q2) + g2(x,Q2) =
∑

q

e2qxδfq(x). (2.15)

Here, we would like to point out that, with this intuitive
parton model, we are doing nothing else but the impulse
approximation that we often use in describing a collision
process, where we make the following approximations:

• during the interaction of the electron with the par-
ton, interactions between the partons are neglected;

• the electron interacts with only one single parton
each time;

• the scatterings of the electron with different partons
are added incoherently.

Although the physical picture of the intuitive model
is very clear, and the model is elegant and practical,
we are not satisfied with the formulation because it is
partly qualitative or semiclassical; hence, it is not easy
to control the accuracy. A proper formulation should be
based on quantum field theory (QFT) and is obtained
by starting with the Feynman diagram, as shown in Fig.
1(a). From this diagram, we obtain immediately that

W (0)
μν (q, p, S) =

1
2π

∫
d4k

(2π)4
Tr[Ĥ(0)

μν (k, q)φ̂(0)(k, p, S)],

(2.16)

where k is the four-momentum of the parton.

Ĥ(0)
μν (q, k) = γμ(/k + /q)γν(2π)δ+((k + q)2) (2.17)

is a calculable hard part. The matrix element

φ̂(0)(k, p, S) =
∫

d4zeik·z〈p, S|ψ̄(0)ψ(z)|p, S〉 (2.18)

is known as the quark–quark correlator and describes the
structure of the nucleon. By taking the collinear approx-
imation, i.e., taking k ≈ xp, and neglecting the power-
suppressed contributions, i.e., the o(M/Q) terms, we ob-
tain
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W (0)
μν (q, p) ≈

[
(−gμν +

qμqν
q2

) +
(q + 2xp)μ(q + 2xp)ν

2xp · q
]

×fq(x). (2.19)

This is exactly the same result as that obtained from Eq.
(2.12) on the basis of the intuitive parton model. At the
same time, we obtain the QFT operator expression of
fq(x), defined via the quark–quark correlator given by
Eq. (2.18), as

fq(x) =
∫

dz−

2π
eixp+z−〈p|ψ̄(0)

γ+

2
ψ(z)|p〉. (2.20)

By inserting the expanded expression for the field oper-
ator ψ(z) in terms of the plane wave and the creation
and/or annihilation operators, we see clearly that fq(x)
is indeed the number density of partons in the nucleon.
However, from this expression, we also immediately see
a severe problem; i.e., this expression is not (local) gauge
invariant! We understand that the physical quantity has
to be gauge invariant and therefore have to find a solu-

tion for this.
The gauge-invariant formulation is obtained by taking

into account the multiple gluon scattering shown by the
diagram series in Figs. 1(a)–(c). This is clear because
(local) gauge invariance implies the existence of a gauge
interaction that needs to be taken into account. In this
way, we obtain

Wμν(q, p, S) =
∞∑

j=0

W (j)
μν (q, p, S), (2.21)

where W (j)
μν (q, p, S) represents the contribution from the

diagram with exchange of j gluon(s). They are all ex-
pressed as a trace of a calculable hard part and a ma-
trix element depending on the structure of the nucleon.
E.g., corresponding to Fig. 1(b), we have j = 1, and
W

(1)
μν (q, p, S) is given by

W (1)
μν (q, p, S) =

∑

c=L,R

W (1,c)
μν (q, p, S), (2.22)

W (1,c)
μν (q, p, S) =

1
2π

∫
d4k1

(2π)4
d4k2

(2π)4
Tr[Ĥ(1,c)

μν (k1, k2, q)φ̂(1)
ρ (k1, k2, p, S)], (2.23)

φ̂(1)
ρ (k1, k2, p, S) =

∫
d4zd4yeik1z+(k2−k1)y〈p, S|ψ̄(0)Aρ(y)ψ(z)|p, S〉, (2.24)

where c in the superscript represents different cuts (left or right) in the diagram. Similarly, corresponding to Fig.
1(c), we have

W (2)
μν (q, p, S) =

∑

c=L,M,R

W (2,c)
μν (q, p, S), (2.25)

W (2,c)
μν (q, p, S) =

1
2π

∫
d4k1

(2π)4
d4k2

(2π)4
d4k

(2π)4
Tr[Ĥ(2,c)ρσ

μν (k1, k2, k, q)φ̂(2)
ρσ (k1, k2, k, p, S)], (2.26)

φ̂(2)
ρσ (k1, k2, k, p, S) =

∫
d4yd4y′d4zeik1y+ik(y′−y)+ik2(z−y′)〈p, S|ψ̄(0)gAρ(y)gAσ(y′)ψ(z)|p, S〉. (2.27)

The matrix element is now a quark–j-gluon(s)–quark
correlator. We also immediately see that none of these
quark–j-gluon(s)–quark correlators is gauge invariant.

To obtain the gauge-invariant form, we need to ap-

ply the collinear expansion proposed in [9–11], which is
carried out in the following four steps.

(1) Make Taylor expansions of all the hard parts at
ki = xip, e.g.,

Ĥ(0)
μν (k, q) = Ĥ(0)

μν (x) +
∂Ĥ

(0)
μν (x)
∂kρ

ω ρ′
ρ kρ′ +

1
2
∂2Ĥ

(0)
μν (x)

∂kρ∂kσ
ω ρ′

ρ kρ′ω σ′
σ kσ′ + · · · , (2.28)

Ĥ(1,L)ρ
μν (k1, k2, q) = Ĥ(1,L)ρ

μν (x1, x2) +
∂Ĥ

(1,L)ρ
μν (x1, x2)
∂k1σ

ω σ′
σ k1σ′ +

∂Ĥ
(1,L)ρ
μν (x1, x2)
∂k2σ

ω σ′
σ k2σ′ + · · · , (2.29)

and so on, where ω ρ′
ρ is a projection operator defined by

ω ρ′
ρ ≡ g ρ′

ρ − n̄ρn
ρ′

.
(2) Decompose the gluon field into longitudinal and

transverse components, i.e.,

Aρ(y) = A+(y)n̄ρ + ω ρ′
ρ Aρ′(y). (2.30)

(3) Apply the Ward identities, such as

∂Ĥ
(0)
μν (x)
∂kρ

= −Ĥ(1)ρ
μν (x, x), (2.31)

∂Ĥ
(1,L)ρ
μν (x1, x2)
∂k1,σ

= −Ĥ(2,L)ρσ
μν (x1, x1, x2)
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−Ĥ(2,M)ρσ
μν (x1, x1, x2), (2.32)

pρĤ
(1,L)ρ
μν (x1, x2) =

H
(0)
μν (x1)

x2 − x1 − iε
, (2.33)

pρĤ
(2,L)ρσ
μν (x1, x, x2) =

1
x− x1 − iε

H(1,L)σ
μν (x1, x2),

(2.34)

pρĤ
(2,M)ρσ
μν (x1, x, x2) = − 1

x2 − x1 − iε
H(1,L)σ

μν (x1, x2)

− 1
x1 − x+ iε

H(1,R)σ
μν (x, x2). (2.35)

(4) Sum up all the terms with the same hard part, and
we obtain

Wμν(q, p, S) =
∑

j

W̃ (j)
μν (q, p, S), (2.36)

W̃ (0)
μν (q, p, S) =

1
2π

∫
d4k

(2π)4
Tr

[
Ĥ(0)

μν (x) Φ̂(0)(k, p, S)
]
,

(2.37)

W̃ (1)
μν (q, p, S) =

1
2π

∫
d4k1

(2π)4
d4k2

(2π)4
∑

c=L,R

Tr
[
Ĥ(1,c)ρ

μν (x1, x2)ω ρ′
ρ Φ̂(1)

ρ′ (k1, k2, p, S)
]
, (2.38)

W̃ (2)
μν (q, p, S) =

1
2π

∫
d4k1

(2π)4
d4k2

(2π)4
d4k

(2π)4
∑

c=L,R,M

Tr
[
Ĥ(2,c)ρσ

μν (x1, x2, x)ω ρ′
ρ ω σ′

σ Φ̂(2)
ρ′σ′(k1, k2, k, p, S)

]
, (2.39)

where Φ̂(j)’s are the gauge-invariant unintegrated quark–quark and quark–j-gluon(s)–quark correlators given by

Φ̂(0)(k, p, S) =
∫

d4yeiky〈p, S|ψ̄(0)L(0; y)ψ(y)|p, S〉, (2.40)

Φ̂(1)
ρ (k1, k2, p, S) =

∫
d4yd4zeik2z+ik1(y−z)〈p, S|ψ̄(0)L(0; z)Dρ(z)L(z; y)ψ(y)|p, S〉, (2.41)

Φ̂(2)
ρσ (k1, k2, k, p, S)

=
∫

d4yd4y′d4zeik1y+ik(y′−y)+ik2(z−y′)〈p, S|ψ̄(0)L(0; y)Dρ(y)L(y; y′)Dσ(y′)L(y′; z)ψ(z)|p, S〉. (2.42)

D(y) is the covariant derivative and is defined as Dρ(y) = −i∂ρ + gAρ(y). The factor L(0; y) is obtained during the
summation of different contributions with the same hard part and is given by

L(0; y) = L†(∞; 0)L(∞; y), (2.43)

L(∞; y) = P e−ig
R ∞

y− dξ−A+(y+,ξ−,�y⊥)

= 1 − ig
∫ ∞

y−
dξ−A+(y+, ξ−, �y⊥) + (−ig)2

∫ ∞

y−
dξ−

∫ ∞

ξ−
dη−A+(y+, ξ−, �y⊥)A+(y+, η−, �y⊥) + · · · , (2.44)

where P stands for the path-ordered integral. L(0; y) is
nothing else but the well-known gauge link, which makes
the quark–quark or quark–j-gluon(s)–quark correlator,
and thus the PDFs defined using them, gauge invariant.

In this way, we have constructed a theoretical frame-
work for systematically calculating the contributions to
the hadronic tensor at the leading order (LO) in pQCD
but at leading as well as higher twists. The results are
given in terms of the gauge-invariant parton distribution
and correlation functions (generally referred to as PDFs).

We emphasize the following two further points derived

directly from these expressions.
First, we note that after collinear expansion, the hard

parts contained in the expressions for W̃ (j)
μν ’s, such as

those given by Eqs. (2.37)–(2.39), are only functions of
the longitudinal component x. They are independent of
the other components of the parton momentum k. We
can integrate over these components of k and simplify
them to

W̃ (0)
μν (q, p, S) =

1
2π

∫
p+dxTr

[
Ĥ(0)

μν (x) Φ̂(0)(x, p, S)
]
,

(2.45)

W̃ (1)
μν (q, p, S) =

1
2π

∫
p+dx1p

+dx2

∑

c=L,R

Tr
[
Ĥ(1,c)ρ

μν (x1, x2)ω ρ′
ρ Φ̂(1)

ρ′ (x1, x2, p, S)
]
, (2.46)

W̃ (2)
μν (q, p, S) =

1
2π

∫
p+dx1p

+dx2p
+dx

∑

c=L,R,M

Tr[Ĥ(2,c)ρσ
μν (x1, x2, x)ω ρ′

ρ ω σ′
σ Φ̂(2)

ρ′σ′(x1, x2, x, p, S)], (2.47)
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where the matrix elements Φ̂’s are given by

Φ̂(0)(x, p, S) ≡
∫

d4k

(2π)4
δ(k+ − xp+)Φ̂(0)(k, p, S) =

∫
dy−

2π
eixp+y−〈p, S|ψ̄(0)L(0; y−)ψ(y−)|p, S〉, (2.48)

Φ̂(1)
ρ (x1, x2, p, S) ≡

∫
d4k1

(2π)4
d4k2

(2π)4
δ(k+

1 − x1p
+)δ(k+

2 − x2p
+)Φ̂(1)(k1, k2, p, S)

=
∫

dy−

2π
dz−

2π
eix2p+z−+ix1p+(y−−z−)〈p, S|ψ̄(0)L(0; z−)Dρ(z−)L(z−; y−)ψ(y−)|p, S〉, (2.49)

Φ̂(2)
ρσ (x1, x2, x, p, S) ≡

∫
d4k1

(2π)4
d4k2

(2π)4
d4k

(2π)4
δ(k+

1 − x1p
+)δ(k+

2 − x2p
+)δ(k+ − xp+)Φ̂(2)(k1, k2, k, p, S)

=
∫

dy−

2π
dy′−

2π
dz−

2π
eix1p+y−+ixp+(y′−−y−)+ix2p+(z−−y′−)〈p, S|ψ̄(0)L(0; y−)Dρ(y−)L(y−; y′−)

×Dσ(y′−)L(y′−; z−)ψ(z−)|p, S〉. (2.50)

From these expressions, we see explicitly that only xi dependences of the quark–quark and/or quark–j-gluon–quark
correlators are involved. This means that only one-dimensional imaging of the nucleon is relevant in inclusive DIS.

Second, owing to the existence of the projection operator ω ρ′
ρ , the hard parts can be further simplified a great

deal. They are given by

Ĥ(0)
μν (x) = πĥ(0)

μν δ(x− xB), (2.51)

Ĥ(1,L)ρ
μν (x1, x2)ω ρ′

ρ =
π

2q · p ĥ
(1)ρ
μν ω ρ′

ρ δ(x1 − xB), (2.52)

Ĥ(2,L)ρσ
μν (x1, x2, x)ω ρ′

ρ ω σ′
σ =

2π
(2q · p)2

[
n̄ρĥ(1)σ

μν +
N̂

(2)ρσ
μν

x2 − xB − iε

]
ω ρ′

ρ ω σ′
σ δ(x1 − xB), (2.53)

Ĥ(2,M)ρσ
μν (x1, x2, x)ω ρ′

ρ ω σ′
σ =

2π
(2q · p)2 ĥ

(2)ρσ
μν ω ρ′

ρ ω σ′
σ δ(x− xB), (2.54)

where ĥ(0)
μν = γμ/nγν/p

+, ĥ(1)ρ
μν = γμ/̄nγ

ρ/nγν , ĥ(2)ρσ
μν = p+γμ/̄nγ

ρ/nγσ/̄nγν/2, and N̂
(2)ρσ
μν = q−γμγ

ρ/nγσγν are matrices
independent of xi. We insert them into Eqs. (2.45)–(2.47) and obtain the simplified expressions for the hadronic
tensor as

W̃ (0)
μν (q, p, S) =

1
2
Tr

[
ĥ(0)

μν Φ̂(0)(xB)
]
, (2.55)

W̃ (1,L)
μν (q, p, S) =

1
4q · pTr

[
ĥ(1)ρ

μν ω ρ′
ρ ϕ̂

(1)
ρ′ (xB)

]
, (2.56)

W̃ (2,L)
μν (q, p, S) =

1
(2q · p)2

{
Tr

[
ĥ(1)ρ

μν ω ρ′
ρ φ̂

(2L)
ρ′ (xB)

]
+ Tr

[
N̂ (2)ρσ

μν ω ρ′
ρ ω σ′

σ ϕ̂
(2L)
ρ′σ′ (xB)

]}
, (2.57)

W̃ (2,M)
μν (q, p, S) =

1
(2q · p)2 Tr

[
ĥ(2)ρσ

μν ω ρ′
ρ ω σ′

σ ϕ̂
(2M)
ρ′σ′ (xB)

]
, (2.58)

where, for explicitness, we omit p, S in the arguments of the correlators. These correlators are defined as

ϕ̂(1)
ρ (x1) ≡

∫
dx2Φ̂(1)

ρ (x1, x2, p, S) =
∫
p+dy−

2π
eixp+y−〈p, S|ψ̄(0)Dρ(0)L(0; y−)ψ(y−)|p, S〉, (2.59)

ϕ̂(2M)
ρσ (x) ≡

∫
dx1dx2Φ̂(2)

ρσ (x1, x2, x, p, S) =
∫
p+dy−

2π
eixp+y−〈p, S|ψ̄(0)Dρ(0)L(0; y−)Dσ(y−)ψ(y−)|p, S〉, (2.60)

ϕ̂(2L)
ρσ (x1) ≡

∫
dxdx2

x2 − x1 − iε
Φ̂(2)

ρσ (x1, x2, x, p, S)

=
∫

dx2

x2 − x− iε
p+dy−

2π
p+dz−

2π
eixp+y−+i(x2−x)p+z−〈p, S|ψ̄(0)L(0; z−)Dρ(z−)Dσ(z−)L(z−; y−)ψ(y−)|p, S〉, (2.61)

φ̂(2L)
σ (x1) ≡

∫
dxdx2n̄

ρΦ̂(2)
ρσ (x1, x2, x, p, S) =

∫
p+dy−

2π
eixp+y−〈p, S|ψ̄(0)D−(0)Dσ(0)L(0; y−)ψ(y−)|p, S〉. (2.62)
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We see explicitly that all the relevant components of
the quark–j-gluon–quark correlators depend only on one
single parton momentum. This means that only quark–j-
gluon–quark correlators that depend on one single parton
momentum are relevant in inclusive DIS.

We emphasize that the results given by Eqs. (2.37)–
(2.39) and their simplified forms given by Eqs. (2.55)–
(2.62), including the gauge links, are derived in the
collinear expansion. They are just the sum of the con-
tributions from the diagram series shown in Fig. 1. This
formalism provides a basic theoretical framework for de-
scribing inclusive DIS at LO pQCD but at leading and
higher twist contributions in terms of gauge-invariant
PDFs.

The PDFs are defined in terms of QFT operators
via these quark–quark correlators by expanding them in
terms of γ matrices and basic Lorentz covariants. For
example, for Φ̂(0)(x, p, S), we have

Φ̂(0)(x) =
1
2

[
Φ(0)

S (x) + iγ5Φ
(0)
PS(x) + γαΦ(0)

α (x)

+γ5γ
αΦ̃(0)

α (x) + iσαβγ5Φ
(0)
Tαβ(x)

]
. (2.63)

The basic Lorentz covariants are constructed from pα,
nα, Sα, and εαβρσ. We obtain the following general re-
sults:

Φ(0)
S (x) = Me(x), (2.64)

Φ(0)
PS(x) = λMeL(x), (2.65)

Φ(0)
α (x) = p+n̄αf1(x)+Mε⊥αρS

ρ
T fT (x)+

M2

p+
nαf3(x),

(2.66)

Φ̃(0)
α (x) = λp+n̄αg1L(x) +MSTαgT (x)

+λ
M2

p+
nαg3L(x), (2.67)

Φ(0)
Tρα(x) = p+n̄[ρSTα]h1T (x) −Mε⊥ραh(x)

+λMn̄[ρnα]hL(x) +
M2

p+
n[ρSTα]h3T (x), (2.68)

where ε⊥ρσ ≡ εαβρσn̄
αnβ, and the anticommutation

symbol A[ρBσ] ≡ AρBσ − AσBρ. The scalar functions
f(x), g(x), and h(x) are the corresponding PDFs. There
are a total of 12 such functions; 3 of them, i.e., f1(x),
g1L(x), and h1T (x), contribute at leading twist and have
clear probability interpretations, whereas 6 of them con-
tribute at twist-3, and the other 3 contribute at twist-
4. We further note that in fact the three time-reversal
odd terms eL(x), fT (x), and h(x) vanish in the one-
dimensional case. We keep them in Eqs. (2.65)–(2.68)
for later comparison with fragmentation functions.

We also see that the PDFs involved here are all scale

independent. This is because we have so far considered
only the LO pQCD contributions, i.e., the tree diagrams.
To go to higher orders of pQCD, we take the loop di-
agrams, gluon radiation, and so on into account. After
proper handling of these contributions, we obtain the fac-
torized form [6], in which the PDFs acquire the scale (Q)
dependence governed by the QCD evolution equations.
In practice, PDFs are parameterized and are given in the
PDF library (PDFlib).

In summary, to study one-dimensional imaging of the
nucleon with inclusive DIS, we take the following steps.

• General symmetry analysis leads to the general
form of the hadronic tensor and/or the cross section
in terms of four independent structure functions.

• The parton model without QCD interaction leads
to LO in pQCD and leading twist results for
the structure functions in terms of Q-independent
PDFs without (local) gauge invariance.

• The parton model with QCD multiple gluon scat-
tering after collinear expansion leads to LO in
pQCD and leading and higher twist contributions in
terms of Q-independent but gauge-invariant PDFs.

• The parton model with QCD multiple gluon
scattering and loop diagram contributions after
collinear approximation, regularization, and renor-
malization leads to leading and higher-order pQCD
and leading twist contributions in factorized forms
in terms of Q-evolved and gauge-invariant PDFs.

In the following, we will follow these four steps
and summarize what we have achieved in the three-
dimensional case. As in Ref. [2], we will focus mainly on
the theoretical framework at LO pQCD but consistently
take leading and higher twist contributions into account.
Before that, we emphasize the following two historical
developments that may be helpful in constructing the
theoretical framework for the TMD case.

First, as mentioned, the study of three-dimensional
imaging of the nucleon was triggered by the experimental
observation of single-spin left–right asymmetries (SSAs)
in the inclusive hadron–hadron collision with a trans-
versely polarized projectile or target. It was known that
pQCD leads to negligibly small asymmetry for the hard
part [12], but the observed asymmetry can be as large as
40% [13]. The hunt for such large asymmetries has lasted
for decades, with the following milestones:

• In 1991, Sivers introduced [14] the asymmetric
quark distribution in a transversely polarized nu-
cleon, which is now known as the Sivers function.
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• In 1993, Boros, Liang, and Meng proposed [15] a
phenomenological model that provides an intuitive
physical picture showing that the asymmetry arises
from the orbital angular momenta of quarks and
what they called the surface effect caused by the
initial- or final-state interactions.

• In 1993, Collins published [16] his proof that the
Sivers function has to vanish because of parity and
time-reversal invariance.

• In 2002, Brodsky, Hwang, and Schmidt calculated
[17] the SSA for semi-inclusive deep inelastic scat-
tering (SIDIS) using an explicit example in which
they took the orbital angular momentum of quarks
and multiple gluon scattering into account.

• In 2002, immediately after [17], Collins pointed out
[18] that multiple gluon scattering is contained in
the gauge link and that the conclusion of his proof
in 1993 was incorrect because he did not consider
the gauge link. He further showed that by taking
the gauge link into account, the same proof leads
to the conclusion that the Sivers function for DIS
and that for the Drell–Yan process have opposite
signs. Belitsky, Ji, and Yuan resolved [19, 20] the
problem of defining the gauge link for a TMD par-
ton density in the light-cone gauge where the gauge
potential does not vanish asymptotically.

The second historical development concerns the study
of azimuthal asymmetry in SIDIS. Georgi and Politzer
showed in 1977 [21] that final-state gluon radiation leads

to azimuthal asymmetries and could be used as a “clean
test” of pQCD. However, soon after, in 1978, Cahn
showed [22] that similar asymmetries can also be ob-
tained if one includes the intrinsic transverse momenta
of partons. The latter (now called the Cahn effect), al-
though power suppressed at higher twist, can be quite
significant and cannot be neglected, as the values of the
asymmetries themselves are usually not very large.

The following two points are particularly valuable
lessons that we learned from these historical develop-
ments: when studying TMDs,

• it is important to take the gauge link into account;
• higher twist effects can be important.

Both of these points demand that, to describe SIDIS
in terms of TMDs, we need the proper QFT formulation
rather than the intuitive parton model.

3 TMDs defined via quark–quark correlator

The TMD PDFs of quarks are defined via the TMD
quark–quark correlator Φ(0)(x, k⊥; p, S) given by Eq.
(2.40) (after integration over k−). A systematical study
is given in Ref. [23], and a very comprehensive treatment
can also be found in Ref. [24]. Here, we first expand it in
terms of γ matrices and obtain a scalar, a pseudoscalar, a
vector, an axial vector, and an antisymmetric and space-
reflection odd tensor part, i.e.,

Φ̂(0)(x, k⊥; p, S) =
1
2
[
Φ(0)

S (x, k⊥; p, S) + iγ5Φ
(0)
PS(x, k⊥; p, S) + γαΦ(0)

α (x, k⊥; p, S)

+γ5γ
αΦ̃(0)

α (x, k⊥; p, S) + iσαβγ5Φ
(0)
Tαβ(x, k⊥; p, S)

]
. (3.1)

The operator expressions of these coefficients are given by the traces of the quark–quark correlator with the corre-
sponding Dirac matrices. For example, for the vector component, we have

Φ(0)
α (x, k⊥; p, S) =

1
2
Tr

[
γαΦ̂(0)(x, k⊥; p, S)

]
=

∫
dz−d2z⊥ei(xp+z−−�k⊥·�z⊥)〈p, S|ψ̄(0)L(0; z)

γα

2
ψ(z)|p, S〉. (3.2)

We then analyze the Lorentz structure of each part by expressing it in terms of possible “basic Lorentz covariants”
and scalar functions. From Φ̂(0)(x, k⊥; p, S), we obtain the results as [23]

Φ(0)
S (x, k⊥; p, S) = M

[
e(x, k⊥) − ε⊥ρσk

ρ
⊥S

σ
T

M
e⊥T (x, k⊥)

]
, (3.3)

Φ(0)
PS(x, k⊥; p, S) = M

[
λeL(x, k⊥) − k⊥ · ST

M
eT (x, k⊥)

]
, (3.4)

Φ(0)
α (x, k⊥; p, S) = p+n̄α

[
f1(x, k⊥) − ε⊥ρσk

ρ
⊥S

σ
T

M
f⊥
1T (x, k⊥)

]
+ k⊥α

[
f⊥(x, k⊥) − ε⊥ρσk

ρ
⊥S

σ
T

M
f⊥1

T (x, k⊥)
]

+ε⊥αρk
ρ
⊥

[
λf⊥

L (x, k⊥) − k⊥ · ST

M
f⊥2

T (x, k⊥)
]

+
M2

p+
nα

[
f3(x, k⊥) − ε⊥ρσk

ρ
⊥S

σ
T

M
f⊥
3T (x, k⊥)

]
, (3.5)

Φ̃(0)
α (x, k⊥; p, S) = p+n̄α

[
λg1L(x, k⊥) − k⊥ · ST

M
g⊥1T (x, k⊥)

]
+MSTαg

′
T (x, k⊥) − ε⊥αβk

β
⊥g

⊥(x, k⊥)
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+k⊥α

[
λg⊥L (x, k⊥) − k⊥ · ST

M
g⊥T (x, k⊥)

]
+
M2

p+
nα

[
λg3L(x, k⊥) − k⊥ · ST

M
g3T (x, k⊥)

]
, (3.6)

Φ(0)
Tρα(x, k⊥; p, S) = p+n̄[ρSTα]h1T (x, k⊥)−p

+n̄[ρε⊥α]βk
β
⊥

M
h⊥1 (x, k⊥)+

p+n̄[ρk⊥α]

M

[
λh⊥1L(x, k⊥)−k⊥ · ST

M
h⊥1T (x, k⊥)

]

+ST [ρk⊥α]h
⊥
T (x, k⊥) −Mε⊥ραh(x, k⊥) +Mn̄[ρnα]

[
λhL(x, k⊥) − k⊥ · ST

M
hT (x, k⊥)

]

+
M2

p+

{
n[ρSTα]h3T (x, k⊥) +

n[ρk⊥α]

M

[
λh⊥3L(x, k⊥) − k⊥ · ST

M
h⊥3T (x, k⊥)

]
− n[ρε⊥α]βk

β
⊥

M
h⊥3 (x, k⊥)

}
. (3.7)

These scalar functions are known as TMD PDFs. There
are a total of 32 such TMD PDFs. Among them, 8 con-
tribute at leading twist, and they all have clear probabil-
ity interpretations such as the number density f1(x, k⊥),
helicity distribution g1L(x, k⊥), transversity h1T (x, k⊥),
Sivers function f⊥

1T (x, k⊥), and Boer–Mulders function
h⊥1 (x, k⊥); 16 contribute at twist-3, and the other 8 con-
tribute at twist-4. We emphasize that they are all scalar
functions of x and k⊥; i.e., they depend on x and k2

⊥.
If we integrate over d2k⊥, terms in which the basic

Lorentz covariants are odd in k⊥ vanish. Eqs. (3.3)–(3.7)
just reduce to the corresponding Eqs. (2.64)–(2.68). At
the leading twist, only 3 of the 8 survive: the number
density f1(x), helicity distribution g1L(x), and transver-
sity h1T (x).

We show the leading twist and twist-3 TMD PDFs in
Tables 1 and 2, respectively. In these tables, we show
also the results for L = 1, i.e., if we neglect multiple
gluon scattering and simply take a nucleon as an ideal
gas system consisting of quarks and antiquarks (see, e.g.,
[24]). We also note that the conventions used here have
the following systematics: f , g, and h represent unpo-
larized, longitudinally polarized, and transversely polar-
ized quarks, respectively; the subscript L or T stands for
longitudinally or transversely polarized nucleons, respec-
tively; the subscript 1 indicates leading twist, no number
indicates twist-3, and subscript 3 indicates twist-4; the
symbol ⊥ in the superscript denotes that the correspond-

ing basic Lorentz covariant is k⊥ dependent.
Higher twist TMD PDFs are also defined via quark–

j-gluon(s)–quark correlators such as those given by Eqs.
(2.59)–(2.62). Many of them, however, are not indepen-
dent, as they are related to those defined via the quark–
quark correlator through the QCD equation of motion,
γ ·D(z)ψ(z) = 0. We can obtain relations such as

xΦ(0)
⊥ρ(x, k⊥; p, S) = −n

α

p+

[
Reϕ(1)

αρ (x, k⊥; p, S)

+ε σ
⊥ρ Imϕ̃(1)

ασ(x, k⊥; p, S)
]
, (3.8)

xΦ̃(0)
⊥ρ(x, k⊥; p, S) = −n

α

p+

[
Reϕ̃(1)

αρ (x, k⊥; p, S)

+ε σ
⊥ρ Imϕ(1)

ασ(x, k⊥; p, S)
]
. (3.9)

It is interesting to see that [35], although it is not gener-
ally proved, all the twist-3 TMD PDFs that are defined
via the quark–gluon–quark correlator ϕ(1)

ρ and involved
in SIDIS are replaced by those defined via the quark–
quark correlator Φ(0).

We emphasize that fragmentation is just conjugate to
parton distribution. A systematic study of the general
structure of the fragmentation function (FF) defined via
the corresponding quark–quark correlator is presented in
Ref. [26]. We should have one-to-one correspondence be-
tween TMD PDFs and TMD FFs. E.g., corresponding
to the quark–quark correlator Φ(0)(k, p, S) given by Eq.
(2.40) and the expanded form in Eq. (3.1), we have

Table 1 The 8 leading twist TMD PDFs defined via the quark-quark correlator. A × means that the corresponding term disappears
upon integrating the quark-quark correlator over d2k⊥.

Quark

polarization

Nucleon

polarization
TMD PDFs if L = 1 integrated over �k⊥ Name

U f1(x, k⊥) f1(x) Number density
U

T f⊥
1T (x, k⊥) 0 × Sivers function

L g1L(x, k⊥) g1L(x) Helicity distribution
L

T g⊥1T (x, k⊥) × Worm-gear/Trans-helicity distribution

U h⊥
1 (x, k⊥) 0 × Boer–Mulders function

T (‖) h1T (x, k⊥) h1T (x) Transversity distribution
T

T (⊥) h⊥
1T (x, k⊥) Pretzelosity

L h⊥
1L(x, k⊥) × Worm-gear/longi-transversity
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Table 2 The 16 twist-3 TMD PDFs defined via the quark-quark correlator. A × means that the corresponding term disappears upon
integrating the quark-quark correlator over d2k⊥.

Quark

polarization

Nucleon

polarization
TMD PDFs if L = 1 Integrated over �k⊥

U e(x, k⊥), f⊥(x, k⊥) 0, f1(x, k⊥)/x e(x), ×
U

T e⊥T (x, k⊥), f⊥1
T (x, k⊥), f⊥2

T (x, k⊥) 0, 0, 0 × × ×
L eL(x, k⊥), g⊥L (x, k⊥) 0, g1(x, k⊥)/x ×, ×

L
T eT (x, k⊥), g′T (x, k⊥), g⊥T (x, k⊥) 0, 0, g1T (x, k⊥)/x × gT (x)

U h(x, k⊥) 0 ×
T (‖) h⊥

T (x, k⊥) h⊥
1T (x, k⊥)/x ×

T
T (⊥) hT (x, k⊥) h1T (x, k⊥)/x + k2

⊥h⊥
1T (x, k⊥)/M2x ×

L hL(x, k⊥) k2
⊥h⊥

1L(x, k⊥)/M2x hL(x)

U L f⊥
L (x, k⊥) 0 ×

L U g⊥(x, k⊥) 0 ×

Ξ̂(0)(kF , p, S) =
1
2π

∑

X

∫
d4ξe−ikF ξ〈0|L†(0,∞)ψ(0)|hX〉〈hX |ψ̄(ξ)L(ξ,∞)|0〉, (3.10)

Ξ̂(0)(z, kF⊥; p, S) =
1
2
[
Ξ(0)

S (z, kF⊥; p, S) + iγ5Ξ
(0)
PS(z, kF⊥; p, S) + γαΞ(0)

α (z, kF⊥; p, S)

+γ5γ
αΞ̃(0)

α (z, kF⊥; p, S) + iσαβγ5Ξ
(0)
Tαβ(z, kF⊥; p, S)

]
. (3.11)

For a spin-1/2 hadron, we have perfect one-to-one correspondence to those given by Eqs. (3.3)–(3.7) for parton
distributions in the nucleon, i.e.,

zΞ(0)
S (z, kF⊥; p, S) = M

[
E(z, kF⊥) +

ε⊥ρσk
ρ
F⊥S

σ
T

M
E⊥

T (z, kF⊥)
]
, (3.12)

zΞ(0)
PS(z, kF⊥; p, S) = M

[
λEL(z, kF⊥) +

kF⊥ · ST

M
ET (z, kF⊥)

]
, (3.13)

zΞ(0)
α (z, kF⊥; p, S) = p+n̄α

[
D1(z, kF⊥) +

ε⊥ρσk
ρ
F⊥S

σ
T

M
D⊥

1T (z, kF⊥)
]

+ kF⊥αD
⊥(z, kF⊥) +Mε⊥αρS

ρ
TDT (z, kF⊥),

+ε⊥αρk
ρ
F⊥

[
λD⊥

L (z, kF⊥) +
kF⊥ · ST

M
D⊥

T (z, kF⊥)
]

+
M2

p+
nα

[
D3(z, kF⊥) +

ε⊥ρσk
ρ
F⊥S

σ
T

M
D⊥

3T (z, kF⊥)
]
, (3.14)

zΞ̃(0)
α (z, kF⊥; p, S) = p+n̄α

[
λG1L(z, kF⊥) +

kF⊥ · ST

M
G⊥

1T (z, kF⊥)
]

+MSTαGT (z, kF⊥) + ε⊥αβk
β
F⊥G

⊥(z, kF⊥)

+kF⊥α

[
λG⊥

L (z, kF⊥) +
kF⊥ · ST

M
G⊥

T (z, kF⊥)
]

+
M2

p+
nα

[
λG3L(z, kF⊥) +

kF⊥ · ST

M
G3T (z, kF⊥)

]
, (3.15)

zΞ(0)
Tρα(z, kF⊥; p, S) = p+n̄[ρSTα]H1T (z, kF⊥) +

p+n̄[ρε⊥α]βk
β
F⊥

M
H⊥

1 (z, kF⊥)

+
p+n̄[ρkF⊥α]

M

[
λH⊥

1L(z, kF⊥) +
kF⊥ · ST

M
H⊥

1T (z, kF⊥)
]

+ ST [ρkF⊥α]H
⊥
T (z, kF⊥) +Mε⊥ραH(z, kF⊥)

+n̄[ρnα]

[
MλHL(z, kF⊥) + kF⊥ · STH

′⊥
T (z, kF⊥)

]
+
M2

p+

{
n[ρSTα]H3T (z, kF⊥) +

n[ρε⊥α]βk
β
F⊥

M
H⊥

3 (z, kF⊥)

+
n[ρkF⊥α]

M

[
λH⊥

3L(z, kF⊥) +
kF⊥ · ST

M
H⊥

3T (z, kF⊥)
]}
. (3.16)

Comparing them with the results given by Eqs. (3.3)–
(3.7), we see clearly the one-to-one correspondence be-
tween the FFs and PDFs. As an example, we show the
eight leading twist components in Table 3. We do not
show the results for L = 1 for FFs. This is because even

if we neglect the multiple gluon scattering that leads to
the gauge link, final-state interactions can still exist be-
tween h andX . In this case, time-reversal invariance does
not lead to zero results for the T-odd amplitudes.

For spin-1 hadrons, the polarization is described by
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the polarization vector S and also the polarization
tensor T (see, e.g., [25] and [26]). The tensor polar-
ization part has five independent components. They
are given by a Lorentz scalar SLL, a Lorentz vector
Sμ

LT = (0, Sx
LT , S

y
LT , 0), and a Lorentz tensor Sμν

TT , which
has two independent nonzero components, Sxx

TT and Sxy
TT ,

in the rest frame of the hadron. These polarization pa-
rameters can be related to the probabilities for parti-
cles in different spin states [25]. In this case, the TMD
quark–quark correlator Ξ̂(0)(z, kF⊥; p, S) is decomposed

into a spin-independent part, a vector-polarization-
dependent part, and a tensor-polarization-dependent
part; i.e., Ξ̂(0)(z, kF⊥; p, S) = Ξ̂U(0)(z, kF⊥; p, S) +
Ξ̂V (0)(z, kF⊥; p, S) + Ξ̂T (0)(z, kF⊥; p, S). The spin-
independent and vector-polarization-dependent part
Ξ̂U+V (0)(z, kF⊥; p, S) takes exactly the same decom-
position as that for the spin-1/2 hadron given by Eqs.
(3.12)–(3.16). The tensor-polarization-dependent part is
presented in Ref. [26] and is given by

Table 3 The 8 leading twist TMD FFs for spin-1/2 hadrons defined via the quark-quark correlator. A × means that the corresponding
term disappears upon integrating the quark-quark correlator over d2kF⊥.

Quark

polarization

Hadron

polarization
TMD FFs Integrated over �kF⊥ Name

U D1(z, kF⊥) D1(z) Number density
U

T D⊥
1T (z, kF⊥) ×

L G1L(z, kF⊥) G1L(z) Spin transfer (longitudinal)
L

T G⊥
1T (z, kF⊥) ×

U H⊥
1 (z, kF⊥) × Collins function

T (‖) H1T (z, kF⊥) H1T (z) Spin transfer (transverse)
T

T (⊥) H⊥
1T (z, kF⊥)

L H⊥
1L(z, kF⊥) ×

zΞT (0)
S (z, kF⊥; p, S) = M

[
SLLELL(z, kF⊥) +

kF⊥ · SLT

M
E⊥

LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
E⊥

TT (z, kF⊥)
]
, (3.17)

zΞT (0)
PS (z, kF⊥; p, S) = M

[εkF SLT

⊥
M

E′⊥
LT (z, kF⊥) +

ε⊥kF αkβS
αβ
TT

M2
E′⊥

TT (z, kF⊥)
]
, (3.18)

zΞT (0)
α (z, kF⊥; p, S) = p+n̄α

[
SLLD1LL(z, kF⊥) +

kF⊥ · SLT

M
D⊥

1LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
D⊥

1TT (z, kF⊥)
]

+kF⊥α

[
SLLDLL(z, kF⊥) +

kF⊥ · SLT

M
D⊥

LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
D⊥

TT (z, kF⊥)
]

+MSLTαDLT (z, kF⊥) + kρ
F⊥STTραD

′⊥
TT (z, kF⊥)

+
M2

p+
nα

[
SLLD3LL(z, kF⊥) +

kF⊥ · SLT

M
D⊥

3LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
D⊥

3TT (z, kF⊥)
]
, (3.19)

zΞ̃T (0)
α (z, kF⊥; p, S) = p+n̄α

[εkF⊥SLT

⊥
M

G⊥
1LT (z, kF⊥) +

ε⊥kF⊥ρkF⊥σS
ρσ
TT

M2
G⊥

1TT (z, kF⊥)
]

+ε⊥ραk
ρ
F⊥

[
SLLG

⊥
LL(z, kF⊥) +

kF⊥ · SLT

M
G⊥

LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
G⊥

TT (z, kF⊥)
]

+Mε⊥ραS
ρ
LTGLT (z, kF⊥) + ε⊥αρkF⊥σS

ρσ
TTG

′⊥
TT (z, kF⊥)

+
M2

p+
nα

[εkF⊥SLT

⊥
M

G⊥
3LT (z, kF⊥) +

ε⊥kF⊥ρkF⊥σS
ρσ
TT

M2
G⊥

3TT (z, kF⊥)
]
, (3.20)

zΞT (0)
Tρα (z, kF⊥; p, S) =

p+n̄[ρε⊥α]σk
σ
F⊥

M

[
SLLH

⊥
1LL(z, kF⊥) +

kF⊥ · SLT

M
H⊥

1LT (z, kF⊥)

+
kF⊥ · STT · kF⊥

M2
H⊥

1TT (z, kF⊥)
]

+ p+n̄[ρε⊥α]σS
σ
LTH1LT (z, kF⊥) +

p+n̄[ρε⊥α]σkF⊥δS
σδ
TT

M
H ′⊥

1TT (z, kF⊥)

+Mε⊥ρα

[
SLLHLL(z, kF⊥) +

kF⊥ · SLT

M
H⊥

LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
H⊥

TT (z, kF⊥)
]

+n̄[ρnα]

[
εkF⊥SLT

⊥ H ′⊥
LT (z, kF⊥) +

ε⊥kF⊥σkF⊥δS
σδ
TT

M
H ′⊥

TT (z, kF⊥)
]

Kai-Bao Chen, Shu-Yi Wei, and Zuo-Tang Liang, Front. Phys. 10(6), 101204 (2015) 101204-11



REVIEW ARTICLE

+
M2

p+

{n[ρε⊥α]σk
σ
F⊥

M

[
SLLH

⊥
3LL(z, kF⊥) +

kF⊥ · SLT

M
H⊥

3LT (z, kF⊥) +
kF⊥ · STT · kF⊥

M2
H⊥

3TT (z, kF⊥)
]

+n[ρε⊥α]σS
σ
LTH3LT (z, kF⊥) +

n[ρε⊥α]σkF⊥δS
σδ
TT

M
H ′⊥

3TT (z, kF⊥)
}
. (3.21)

We see that, for the vector-polarization-dependent part, similar to case of the nucleon TMD PDFs, there are a
total of 32 components; 8 contribute at leading twist, 16 contribute at twist-3, and the other 8 contribute at twist-4.
For the tensor-polarization-dependent part, there are a total of 40 components, where 10 contribute at leading twist,
20 contribute at twist-3, and the other 10 contribute at twist-4. In Table 4, we list the twist-2 components for the
tensor-polarization-dependent part.

If we integrate over d2kF⊥, we have the following, corresponding to Eqs. (3.12)–(3.16), for the spin-independent
and vector-polarization-dependent parts:

zΞU+V (0)
S (z; p, S) = ME(z), (3.22)

zΞU+V (0)
PS (z; p, S) = λMEL(z), (3.23)

zΞU+V (0)
α (z; p, S) = p+n̄αD1(z) +Mε⊥αρS

ρ
TDT (z) +

M2

p+
nαD3(z), (3.24)

zΞ̃U+V (0)
α (z; p, S) = λp+n̄αG1L(z) +MSTαGT (z) + λ

M2

p+
nαG3L(z), (3.25)

zΞU+V (0)
Tρα (z; p, S) = p+n̄[ρSTα]H1T (z) +Mε⊥ραH(z) + λMn̄[ρnα]HL(z) +

M2

p+
n[ρSTα]H3T (z). (3.26)

For the tensor-polarization-dependent part, we have

zΞT (0)
S (z; p, S) = MSLLELL(z), (3.27)

zΞT (0)
PS (z; p, S) = 0, (3.28)

zΞT (0)
α (z; p, S) = p+n̄αSLLD1LL(z) +MSLTαDLT (z, kF⊥) +

M2

p+
nαSLLD3LL(z), (3.29)

zΞ̃T (0)
α (z; p, S) = Mε⊥ραS

ρ
LTGLT (z), (3.30)

zΞT (0)
Tρα (z; p, S) = p+n̄[ρε⊥α]σS

σ
LTH1LT (z) +Mε⊥ραSLLHLL(z) +

M2

p+
n[ρε⊥α]σS

σ
LTH3LT (z). (3.31)

Table 4 The 10 tensor polarization dependent TMD FFs for spin-1 hadrons defined via the quark-quark correlator. A × means that
the corresponding term disappears upon integrating the quark-quark correlator over d2kF⊥.

Parameters b11 b22 b12

Quark

polarization

Hadron

polarization
TMD FFs Integrated over �kF⊥ Name

LL D1LL(z, kF⊥) D1LL(z) Spin alignment

U LT D⊥
1LT (z, kF⊥) ×

TT D⊥
1TT (z, kF⊥) ×

LT G⊥
1LT (z, kF⊥) ×

L
TT G⊥

1TT (z, kF⊥) ×
LL H⊥

1LL(z, kF⊥) ×
T LT H1LT (z, kF⊥), H⊥

1LT (z, kF⊥) H1LT (z)

TT H⊥
1TT (z, kF⊥), H′⊥

1TT (z, kF⊥) ×

We see that, for the spin-independent and vector-
polarization-dependent parts, 12 components survive; 3
of them contribute at twist-2, 6 contribute at twist-3, and
the other 3 contribute at twist-4. This is exactly the same
as the result for the PDFs for nucleons, and we have ex-
act one-to-one correspondence between the results given
by Eqs. (3.22)–(3.26) and those given by Eqs. (2.64)–

(2.68). For the tensor-polarization-dependent part, only
8 components survive; 2 of them contribute at twist-2, 4
contribute at twist-3, and the other 2 contribute at twist-
4. This corresponds to the situation for the PDFs for
vector mesons. We should have a one-to-one correspon-
dence between the tensor-polarization-dependent FFs for
production of spin-1 hadrons and those PDFs for spin-1
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hadrons. We also list the twist-2 components in Table 4.

4 Accessing the TMDs in high-energy
reactions

The TMDs can be studied in semi-inclusive high-energy
reactions such as SIDIS (e− +N → e− + h+X), semi-
inclusive Drell–Yan processes (h+h→ l+ + l−+X), and
semi-inclusive hadron production in e+e−-annihilation
(e+ + e− → h1 + h2 + X). For SIDIS, we study TMD
PDFs and TMD FFs, whereas for Drell–Yan processes
and e+e− annihilation, we study TMD PDFs and TMD
FFs separately. We now follow the same steps as those
for inclusive DIS and summarize briefly what we have al-
ready done in constructing the corresponding theoretical

framework.
(I) The general forms of hadronic tensors: For all

three classes of processes, the general forms of hadronic
tensors have been studied and obtained. For SIDIS, this
has been discussed in Refs. [27–30], and it has been
shown that one needs 18 independent structure func-
tions for spinless h. A comprehensive study of Drell–Yan
processes was made in Ref. [31], and the number of in-
dependent structure functions is 48 for hadrons with
spin 1/2. A study of e+e− annihilation was presented
in Ref. [32], and one needs 72 for spin-1/2 h1 and h2.
The results are systematically presented in those papers,
and we will not repeat them here. However, we present,
as an example, the general form of the differential cross
section for e−N → e−hX . It is given by

dσ
dxdydzdψd2ph⊥

=
α2

em

xyQ2

(
1 +

γ2

2x

)(
FUU + λlFLU + λFUL + λlλFLL + S⊥FUT + λlS⊥FLT

)
, (4.1)

FUU =
y2

1 − ε

(
FUU,T + εFUU,L +

√
2ε(1 + ε)F cos φh

UU cosφh + εF cos 2φh

UU cos 2φh

)
, (4.2)

FUL =
y2

1 − ε

(√
2ε(1 + ε)F sin φh

UL sinφh + εF sin 2φh

UL sin 2φh

)
, (4.3)

FLU =
y2

1 − ε

√
2ε(1 − ε)F sin φh

LU sinφh, (4.4)

FLL =
y2

1 − ε

(√
1 − ε2FLL +

√
2ε(1 − ε)F cos φh

LL cosφh

)
, (4.5)

FUT =
y2

1 − ε

[√
2ε(1 + ε)F sin φS

UT sinφS +
(
F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L

)
sin(φh − φS)

+εF sin(φh+φS)
UT sin(φh + φS) +

√
2ε(1 + ε)F sin(2φh−φS)

UT sin(2φh − φS) + εF
sin(3φh−φS)
UT sin(3φh − φS)

]
, (4.6)

FLT =
y2

1 − ε

[√
2ε(1 − ε)F cos φS

LT cosφS +
√

1 − ε2F
cos(φh−φS)
LT cos(φh − φS)

+
√

2ε(1 − ε)F cos(2φh−φS)
LT cos(2φh − φS)

]
, (4.7)

where ε = (1 − y − 1
4γ

2y2)/(1 − y + 1
2y

2 + 1
4γ

2y2),
γ = 2Mx/Q; the azimuthal angle ψ is that of the out-
going lepton �l′ around the incident lepton beam with
respect to an arbitrary fixed direction, which, for a trans-
versely polarized target, is taken as the direction of �ST .
In the deep inelastic limit, neglecting power-suppressed
terms, dψ = dφS .

From Eqs. (4.1)–(4.7), we see explicitly that the 18
structure functions F are determined by the different
azimuthal asymmetries in different polarization cases.
These different azimuthal asymmetries are just defined
by the average value of the corresponding trigonometric
functions, for example:

A
sin(φh−φS)
UT = 〈sin(φh − φS)〉UT

=
F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L

2(FUU,T + εFUU,L)
, (4.8)

A
sin(φh+φS)
UT = 〈sin(φh + φS)〉UT

=
εF

sin(φh+φS)
UT

2(FUU,T + εFUU,L)
. (4.9)

We also emphasize that they are the general forms in-
dependent of the parton model and are valid at leading
and higher twist and also leading and higher order in
pQCD.

(II) LO in pQCD and leading twist parton model res-
ults: These are the simplest parton model results and
can be obtained easily. E.g., for SIDIS,

dσ(0)

dxdydzdφSd2ph⊥
=

α2
em

xyQ2

(
F (0)

UU + λlF (0)
LU + λF (0)

UL

+λlλF (0)
LL + S⊥F (0)

UT + λlS⊥F (0)
LT

)
, (4.10)

F (0)
UU = A(y)C[f1D1] + 2(1 − y)C[w1h

⊥
1 H

⊥
1 ] cos(2φh),
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(4.11)

F (0)
UL = 2(1 − y)C[w1h

⊥
1LH

⊥
1 ] sin(2φh), (4.12)

F (0)
LU = 0, (4.13)

F (0)
LL = C(y)C[g1LD1], (4.14)

F (0)
UT = A(y)C[w2f

⊥
1TD1] sin(φh − φS) + 2(1 − y)C[w3h1TH

⊥
1 ] sin(φh + φS) + 2(1 − y)C[w4h

⊥
1TH

⊥
1 ] sin(3φh − φS),

(4.15)

F (0)
LT = C(y)C[−w2g1TD1] cos(φh − φS), (4.16)

where A(y) = 1 + (1 − y)2, and C(y) = y(2 − y). C[wifD] denotes the convolution of f and D weighted by wi, i.e.,

C[wifD] ≡ x
∑

q

e2q

∫
d2k⊥d2kF⊥δ(2)(k⊥ − kF⊥ − phT /z)wi(k⊥, kF⊥, phT )f q(x, k⊥)Dq→hX(z, kF⊥). (4.17)

The weights wi are given by

w1(�k⊥, kF⊥) =
−2(p̂hT · �kF⊥)(p̂hT · �k⊥) + (�k⊥ · �kF⊥)

MMh
,

(4.18)

w2(�k⊥, kF⊥) = − p̂hT · �k⊥
M

, (4.19)

w3(�k⊥, kF⊥) = − p̂hT · �kF⊥
Mh

, (4.20)

w4(�k⊥, kF⊥) =
(p̂hT · �k⊥)(�k⊥ · �kF⊥) + �k2

⊥(p̂hT · �kF⊥)
M2Mh

−2(p̂hT · �k⊥)2(p̂hT · �kF⊥)
M2Mh

, (4.21)

where p̂hT = �phT /|�phT | is the corresponding unit vector.
The results can be obtained from those given in, e.g., [30]
by neglecting all the power-suppressed contributions.

From Eqs. (4.10)–(4.16), we see in particular that, at
leading twist, there exist six nonzero azimuthal asymme-
tries in different polarization cases, i.e.,

〈cos 2φh〉(0)UU =
(1 − y)
A(y)

C[w1h
⊥
1 H

⊥
1 ]

C[f1D1]
, (4.22)

〈sin 2φh〉(0)UL =
(1 − y)
A(y)

C[w1h
⊥
1LH

⊥
1 ]

C[f1D1]
, (4.23)

〈sin(φh − φS)〉(0)UT =
C[w2f

⊥
1TD1]

2C[f1D1]
, (4.24)

〈sin(φh + φS)〉(0)UT =
(1 − y)
A(y)

C[w3h1TH
⊥
1 ]

C[f1D1]
, (4.25)

〈sin(3φh − φS)〉(0)UT =
(1 − y)
A(y)

C[w4h
⊥
1TH

⊥
1 ]

C[f1D1]
, (4.26)

〈cos(φh − φS)〉(0)LT =
C(y)
2A(y)

C[−w2g1TD1]
C[f1D1]

. (4.27)

They are determined by the Boer–Mulders function h⊥1
convoluted with the Collins function H⊥

1 , the worm-
gear (longi-transversity) h⊥1L convoluted with the Collins
function H⊥

1 , the Sivers function f⊥
1T convoluted with

D1, the transversity h1T convoluted with the Collins
function H⊥

1 , and the worm-gear (trans-helicity distri-
bution) g⊥1T convoluted with the Collins function H⊥

1 .
The azimuthal asymmetries Asin(φh∓φS)

UT are due to the
Sivers and Collins effects and are often referred to as
Sivers asymmetry and Collins asymmetry, respectively.

We emphasize that the results given by Eqs. (4.10)–
(4.21) give a complete parton model result at LO in
pQCD and leading twist. They can be used to extract
the TMDs at this order. Any attempt to go beyond LO
in pQCD or to consider higher twists needs to go beyond
this expression.

(III) LO in pQCD, leading and higher twist results:
For semi-inclusive processes in which only one hadron is
involved, either in the initial or the final state, it has been
shown [33–37] that collinear expansion can be applied.
Such processes include SIDIS [e−+N → e−+q(jet)+X ],
and e+e−-annihilation [e+ + e− → h + q̄(jet) +X ]. By
applying collinear expansion, we have constructed the
theoretical framework for these processes by which lead-
ing as well as higher twist contributions can be calculated
systematically to LO in pQCD. The complete results up
to twist-3 are presented in Refs. [35–37]. For polarized
e− + N → e− + q(jet) + X , the simplified expressions
for the hadronic tensor are very similar to those for the
inclusive DIS given by Eqs. (2.55)–(2.58),

W̃ (0,si)
μν (q, p, S, k⊥) =

1
2
Tr

[
ĥ(0)

μν Φ̂(0)(xB , k⊥)
]
, (4.28)

W̃ (1,L,si)
μν (q, p, S, k⊥) =

1
4q · pTr

[
ĥ(1)ρ

μν ω ρ′
ρ ϕ̂

(1,L)
ρ′ (xB , k⊥)

]
, (4.29)
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W̃ (2,L,si)
μν (q, p, S, k⊥) =

1
(2q · p)2

{
Tr

[
ĥ(1)ρ

μν ω ρ′
ρ φ̂

(2L)
ρ′ (xB , k⊥)

]
+ Tr

[
N̂ (2)ρσ

μν ω ρ′
ρ ω σ′

σ ϕ̂
(2L)
ρ′σ′ (xB , k⊥)

]}
, (4.30)

W̃ (2,M,si)
μν (q, p, S, k⊥) =

1
(2q · p)2 Tr

[
ĥ(2)ρσ

μν ω ρ′
ρ ω σ′

σ ϕ̂
(2M)
ρ′σ′ (xB , k⊥)

]
. (4.31)

The complete results up to twist-3 are given by

dσ
dxdyd2k⊥

=
2πα2

eme
2
q

Q2y

(WUU + λlWLU + S⊥WUT + λWUL + λlλWLL + λlS⊥WLT

)
, (4.32)

WUU (x, k⊥, φ) = A(y)fq(x, k⊥) − 2x|�k⊥|
Q

B(y)f⊥
q (x, k⊥) cosφ, (4.33)

WLU (x, k⊥, φ) = −2x|�k⊥|
Q

D(y)g⊥(x, k⊥) sinφ, (4.34)

WUT (x, k⊥, φ, φS) =
|�k⊥|
M

A(y)f⊥
1T (x, k⊥) sin(φ− φS)

+
2xM
Q

B(y)
{ k2

⊥
2M2

f⊥
T (x, k⊥) sin(2φ− φS) − fT (x, k⊥) sinφS

}
, (4.35)

WUL(x, k⊥, φ) = −2x|�k⊥|
Q

B(y)f⊥
L (x, k⊥) sinφ, (4.36)

WLL(x, k⊥, φ) = C(y)g1L(x, k⊥) − 2x|�k⊥|
Q

D(y)g⊥L (x, k⊥) cosφ, (4.37)

WLT (x, k⊥, φ, φS) =
|�k⊥|
M

C(y)g⊥1T (x, k⊥) cos(φ − φS)

−2xM
Q

D(y)
[
gT (x, k⊥) cosφS − k2

⊥
2M2

g⊥T (x, k⊥) cos(2φ− φS)
]
, (4.38)

where B(y) = 2(2 − y)
√

1 − y, and D(y) = 2y
√

1 − y. For unpolarized e− +N → e− + q(jet) +X , the results up
to twist-4 have also been obtained [34]:

dσUU

dxdyd2k⊥
=

2πα2
eme

2
q

Q2y

{
A(y)f1(x, k⊥) − 2B(y)

|�k⊥|
Q

xf⊥(x, k⊥) cosφ

−4(1 − y)
|�k⊥|2
Q2

x[ϕ(1)⊥
3 (x, k⊥) − ϕ̃

(1)⊥
3 (x, k⊥)] cos 2φ

+8(1 − y)
2x2M2

Q2
f3(x, k⊥) − 2A(y)

|�k⊥|2
Q2

x[ϕ(2,L)⊥
3 (x, k⊥) − ϕ̃

(2,L)⊥
3 (x, k⊥)]

}
. (4.39)

These results are expressed in terms of the gauge-invariant TMD PDFs or FFs and can be used as the basis for
measuring these TMDs via the corresponding process at the LO in pQCD.

We would like in particular to draw attention to the results for e+ + e− → h + q̄(jet) + X for h with different
spins [37]. Here, for the hadronic tensor, we again obtain very similar formulae for this process; e.g., corresponding
to Eqs. (4.28)–(4.30), we have

W̃ (0,si)
μν (q, p, S, k′⊥|e+e−) =

1
2
Tr

[
ĥ(0)

μν Ξ̂(0)(zB, k
′
⊥)

]
, (4.40)

W̃
(1,L,si)
μν) (q, p, S, k′⊥|e+e−) = − 1

4p · qTr
[
ĥ(1)ρ

μν ω ρ′
ρ Ξ̂(1)

ρ′ (zB, k
′
⊥)

]
, (4.41)

W̃ (2,L,si)
μν (q, p, S, k′⊥|e+e−) =

1
4(p · q)2 Tr

[
ĥ(1)ρ

μν ω ρ′
ρ Ξ̂(2B)

ρ′ (zB, k
′
⊥) + N̂ (2)ρσ

μν ω ρ′
ρ ω σ′

σ Ξ̂(2C)
ρ′σ′ (zB, k

′
⊥)

]
, (4.42)

W̃ (2,M,si)
μν (q, p, S, k′⊥|e+e−) =

1
4(p · q)2 Tr

[
ĥ(2)ρσ

μν ω ρ′
ρ ω σ′

σ Ξ̂(2A)
ρ′σ′ (zB, k

′
⊥)

]
. (4.43)
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Complete twist-3 results for the differential cross sec-
tions, azimuthal asymmetries, and polarizations were ob-
tained for hadrons with spin 0, 1/2, and 1 in Ref. [37].
For spin-1 hadrons in particular, we see that tensor po-
larization is involved, even at the leading twist level; we
have, for e+e− annihilation at the Z0 pole,

S
(0)
LL(y, z, pT ) =

∑
q T

q
0 (y)D1LL(z, pT )

2
∑

q T
q
0 (y)D1(z, pT )

, (4.44)

S
n(0)
LT (y, z, pT ) = −2|�pT |

3zM

∑
q Pq(y)T

q
0 (y)G⊥

1LT (z, pT )
∑

q T
q
0 (y)D1(z, pT )

,

(4.45)

S
t(0)
LT (y, z, pT ) = −2|�pT |

3zM

∑
q T

q
0 (y)D⊥

1LT (z, pT )
∑

q T
q
0 (y)D1(z, pT )

, (4.46)

S
nn(0)
TT (y, z, pT ) = −2|�pT |2

3M2

∑
q T

q
0 (y)D⊥

1TT (z, pT )
∑

q T
q
0 (y)D1(y, pT )

,

(4.47)

S
nt(0)
TT (y, z, pT ) =

2|�pT |2
3M2

∑
q Pq(y)T

q
0 (y)G⊥

1TT (z, pT )
∑

q T
q
0 (y)D1(y, pT )

,

(4.48)

where n and t denote the two transverse directions of the
produced vector meson, normal to and inside the produc-
tion plane, respectively. The coefficient T q

0 (y) = cq1c
e
1[(1−

y)2 + y2] − cq3c
e
3[1 − 2y], where ce1 = (ceV )2 + (ceA)2, and

ce3 = 2ceV c
e
A; y in this reaction is defined as y ≡ l+1 /k

+.
Pq(y) = T q

1 (y)/T q
0 (y) is the polarization of the quark

produced by Z0 decay, and T q
1 (y) = −cq3ce1[(1 − y)2 +

y2] + cq1c
e
3[1 − 2y]. This situation has been much less ex-

plored to date and is a worthwhile topic for many further
studies.

The three types of semi-inclusive processes mentioned
above always involve two hadrons. How to apply collinear
expansion to such processes has not been demonstrated.
It is unclear how one can systematically calculate lead-
ing and higher twist contributions. Nevertheless, prac-
tical twist-3 calculations have been performed for these
processes [38–41] using the following steps:

(i) draw Feynman diagrams with multiple gluon scat-
tering to the order of one gluon exchange,

(ii) insert the gauge link in the correlator wherever
needed to make it gauge invariant, and

(iii) carry out calculations to the order 1/Q.
Although this method has not been proved, it is inter-

esting to see that the results obtained this way reduce
exactly to those obtained in the corresponding simplified
cases where collinear expansion is applied if we take the
corresponding fragmentation functions as δ functions.

(IV) TMD factorization and evolution: To describe

the semi-inclusive high-energy reactions mentioned
above in terms of QCD and the parton model, TMDs
are needed, and the factorization theorem has to involve
the transverse momentum dependence. A TMD factor-
ization theorem has been established at the leading twist
for semi-inclusive processes [42–49]. TMD evolution the-
ory is also developing very rapidly [50–63]. Boer [3] gave
an overview at Spin2014, and an annual workshop series
dedicated to this topic was established in 2012. We refer
interested readers to these talks and overviews.

5 Available data and parameterizations

All three types of semi-inclusive reactions have been in-
vestigated experimentally. The results are summarized,
e.g., in a number of plenary talks at Spin2014 by Sto-
larski and Rostomyan [64, 65]. Here, we will just briefly
summarize the main data available and then try to sort
out the available TMD parameterizations.

For SIDIS, measurements have been made by the
HERMES Collaboration [66–70] at DESY, the COM-
PASS Collaboration [71–78] at CERN, CLAS [79, 80],
and the Hall A Collaboration [81–84] at Jefferson Labo-
ratory (JLab). We list these SIDIS experiments in Table
5 and briefly summarize the results as follows.

At DESY, the single-spin asymmetries for SIDIS were
first measured with a longitudinally polarized target by
HERMES [66] for production of charged pions and then
measured for the first time with a transversely polarized
target in [67]. They found nonzero Sivers and Collins
asymmetries 〈sin(φh − φS)〉UT and 〈sin(φh + φS)〉UT .
Measurements were then conducted for π0 and kaons [68,
69] and also for azimuthal asymmetries 〈cosφh〉UU and
〈cos(2φh)〉UU in the unpolarized case [70].

At CERN, COMPASS has measured the Sivers and
Collins asymmetries in reactions with deuteron or pro-
ton targets for production of charged hadrons, pions, and
kaons [71–78], and also 〈cosφh〉UU and 〈cos(2φh)〉UU in
the unpolarized case [78].

At JLab, CLAS has measured [79, 80] 〈sin(2φh)〉UL

for pions with different charges and 〈sinφh〉LU for π0.
The Hall A Collaboration has measured [81–84] the
Collins and Sivers asymmetries for π± and K±, and
〈cos(φh − φs)〉LT for π± and 〈sin(3φh − φs)〉UT . These
measurements are all summarized in Table 5.

In addition to the data for SIDIS, we now have mea-
surements of the azimuthal asymmetries in e+e− →
π+π+X made by Belle [85–87] and the BaBar collabora-
tion [88], and also preliminary results from BES [89]. For
Drell–Yan processes, data are available on the azimuthal
asymmetries in, e.g., reactions using pion beams [90–93]
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and pp or pD collisions [94, 95].

Table 5 Available measurements on azimuthal asymmetries in
SIDIS

Collaboration Reaction Asymmetries Ref.’s

HERMES e+N → e+π±X A
sin φh
UL , A

sin 2φh
UL [66]

e+N → e+π±X ASiv, AColl [67]

e+N → e+π±,0(K±)X ASiv [68]

e+N → e+π±,0(K±)X AColl [69]

e+N → e+π±(K±)X A
cos φh
UU ,A

cos 2φh
UU [70]

COMPASS μ− 6LiD → μ−h±X ASiv, AColl [71, 72]

μ− 6LiD → μ−π±(K±,0)XASiv, AColl [73]

μ−NH3 → μ−h±X ASiv, AColl [74]

μ−NH3 → μ−h±X AColl [75]

μ−NH3 → μ−h±X ASiv [76]

μ−NH3 → μ−π±(K±,0)X ASiv, AColl [77]

μ− 6LiD → μ−h±X A
cos φh
UU , A

cos 2φh
UU [78]

CLAS e−p → e−π±,0X A
sin 2φh
UL [79]

e− p → e−π0X A
sin φh
LU [80]

JLab Hall A e− 3He → e−π±X ASiv, AColl [81]

e− 3He → e−π±X A
cos(φh−φS)
LT [82]

e− 3He → e−π±X A
sin(3φh−φS)
UT [83]

e− 3He → e−K±X ASiv, AColl [84]

Although the data are still far from sufficiently abun-
dant to give precise control of the TMDs involved, dif-
ferent sets of TMD parameterizations have already been
extracted from them. We briefly sort them out as follows.

The first part concerns what people called the first-
phase parameterizations, i.e., TMD parameterizations
without QCD evolution. Here, the following results in
particular are available. We emphasize once more that
all the results, including the figures, are taken from Refs.
[96–112]. Interested readers are referred to these refer-
ences for more details.

(1) Transverse momentum dependence: This is usu-
ally taken as [96–100] a Gaussian in a factorized form
independent of the longitudinal variable z or x, e.g.,

f1(x, k⊥) = f1(x)e−
�k2
⊥/〈�k2

⊥〉/π〈�k2
⊥〉, (5.1)

D1(z, kF⊥) = D1(z)e−
�k2

F⊥/〈�k2
F⊥〉/π〈�k2

F⊥〉. (5.2)

The width has been fitted, and the form and flavor de-
pendence and so on have been tested. The typical values
of the fitted widths are, e.g., 〈�k2

⊥〉 = 0.25 GeV2 and
〈�k2

F⊥〉 = 0.20 GeV2 [96]. Roughly speaking, this is a
quite satisfactory fit. However, it has also been pointed
out, e.g., in [99] for the TMD FF, that the Gaussian
form seems to depend on the flavor and even on z, which
means that it is only a zeroth-order approximation.

(2) Sivers function: All the data available from HER-
MES [67–69], COMPASS [71–74, 76, 77], and JLab Hall
A [81, 82, 84] on the Sivers asymmetries in SIDIS for pi-

ons and kaons have been used for parameterization. The
Sivers function is usually parameterized [96, 101–106] in
the form of the number density fq(x, k⊥) multiplied by
an x-dependent factor Nq(x) and a k⊥-dependent factor
h(k⊥), i.e.,

ΔNfq(x, k⊥) = 2Nq(x)h(k⊥)fq(x, k⊥), (5.3)

where Nq(x) is taken as a binomial function of x,

Nq(x) = Nqx
αq (1 − x)βq (αq + βq)αq+βq/ααq

q ββq
q , (5.4)

and h(k⊥) is taken as a Gaussian,

h(k⊥) =
√

2e(|�k⊥|/M1)e−
�k2
⊥/M2

1 . (5.5)

Here the Sivers function ΔNfq(x, k⊥) is defined via

fq/N↑(x, k⊥) = fq/N (x, k⊥)+
1
2
ΔNfq(x, k⊥)�S ·(p̂×k̂⊥),

(5.6)

which is related to the Sivers function f⊥
1T (x, k⊥) defined

in Eq. (3.5) by

ΔNfq(x, k⊥) = −2|�k⊥|
M

f⊥q
1T (x, k⊥). (5.7)

There already exist different sets such as the Bochum
[101–103], Torino [96, 104, 106], and Vogelsang–Yuan
[105] fits. One thing seems to be clear: the Sivers func-
tion is nonzero for protons, and it has different signs for
u and d quarks, as shown in Fig. 2.

(3) Transversity and Collins function: A simultaneous
extraction of the transversity and Collins function from
SIDIS data on Collins asymmetry obtained by the HER-
MES [67–70] and COMPASS [71–77] collaborations and
from e+e− data obtained by Belle [85–87] has been car-
ried out by the Torino group [97, 107]. A form similar to
that of the Sivers function has been taken, e.g.,

Fig. 2 Example of the parameterizations of the Sivers functions
for u and d flavors at Q2 = 2.4(GeV/c)2 by the Torino group. The
figure is taken from [104].
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ΔT q(x, k⊥) =
1
2
N T

q (x)[fq(x) + Δq(x)]

× e−�k2
⊥/〈�k2

⊥〉T /π〈�k2
⊥〉, (5.8)

ΔNDh/q(z, phT ) = 2NC
q (z)Dh/q(z)h(phT )

× e−�p2
hT /〈�p2

hT 〉/π〈�p2
hT 〉, (5.9)

N T
q (x) = N T

q x
α(1 − x)β (α+ β)α+β

ααββ
, (5.10)

NC
q (z) = NC

q z
γ(1 − z)δ (γ + δ)γ+δ

γγδδ
. (5.11)

h(phT ) =
√

2e
|�phT |
Mh

e−�p2
hT /M2

h , (5.12)

and it has been determined that the Collins function
is nonzero and has different signs, e.g., for u → π+ or
d→ π+, as shown in Fig. 3. Here, similar to the case for
the Sivers function, the Collins function ΔNDh/q(z, kF⊥)
is defined via

Dh/q↑(z, phT ) = Dq/N (z, phT )

+
1
2
ΔNDh/q(z, phT )�sq(k̂q × p̂hT ), (5.13)

which is related to the Collins function H⊥
1 (z, phT ) de-

fined in Eq. (3.16) by

ΔNDh/q(z, phT ) =
2|�phT |
zMh

H⊥q
1 (z, phT ). (5.14)

(4) Boer–Mulders function: It was pointed out [111]
that the HERMES and COMPASS data on 〈cos 2φ〉
asymmetry [70, 78] provide the first experimental evi-
dence of the Boer–Mulders effect in SIDIS. Studies in
this direction have been made in Refs. [110, 111] to ex-
tract the Boer–Mulders function from the SIDIS data
[70, 78] and in Refs. [108, 109, 112] to extract it from
the Drell–Yan data [90–95]. A fit to the first moments
of the Boer–Mulders functions of the u and d quarks is
shown in Fig. 4. The form is again similar to the Sivers
function, being the Sivers function just multiplied by a

Fig. 3 Example of the Torino parameterizations of the transver-
sity and Collins function. In the left panel, we see the transversities
xΔT q(x) = xh1q(x) for q = u, d; in the right panel, we see the first
moments of the favored and disfavored Collins functions. The fig-
ure is taken from Ref. [107].

Fig. 4 First extractions of the Boer-Mulders function h⊥u
1 (x)

and h⊥d
1 (x). This figure is taken from Ref. [111].

constant, e.g.,

h⊥q
1 (x, k⊥) = λqf

⊥q
1T (x, k⊥). (5.15)

However, we note that the 〈cos 2φ〉 asymmetry receives
twist-4 contributions because of the Cahn effect [22]. A
proper treatment of these twist-4 effects involves twist-4
TMDs, as shown in Eq. (4.39) and in Ref. [34]. Because of
the multiple gluon scattering shown in Fig. 1, the twist-4
effects could differ greatly from that given in Ref. [22],
the results in which correspond to the case of L = 1.
A careful check might change the conclusion obtained in
Refs. [108–112].

Attempts to parameterize other TMDs such as the
pretzelocity h⊥1T have also been made [113]. Although
there is not enough data to yield high-accuracy con-
straints, the obtained qualitative features are also inter-
esting.

The second part concerns the QCD evolution of the
TMDs. As mentioned earlier, this is a topic that has
recently developed very rapidly. Recent dedicated publi-
cations include [50–63]. QCD evolution equations have
been constructed, in particular for unpolarized TMD
PDFs and also for polarized TMDs such as the Sivers
function. The numerical results obtained from the evo-
lution equations show explicitly that QCD evolution is

Fig. 5 Example showing the TMD evolution of the Gaussian pa-
rameterization in the low k⊥-region. The curves show the evolved
Bochum Gaussian fits of up quark Sivers function at x = 0.1. This
figure is taken from Ref. [54].

101204-18 Kai-Bao Chen, Shu-Yi Wei, and Zuo-Tang Liang, Front. Phys. 10(6), 101204 (2015)



REVIEW ARTICLE

Fig. 6 Example showing the evolved k⊥ dependence in the large
k⊥ region. Here we see the up-quark Sivers function at Q = 5 GeV
and Q = 91.19 compared with the corresponding Gaussian fits at
low-k⊥ region at x = 0.1. This figure is taken from Ref. [54].

Fig. 7 Example showing the difference between the results of the
TMD evolution with a DGLAP evolution for x-dependence only for
unpolarized TMD PDF. This figure is taken from Ref. [55].

very significant for the TMDs. Not only the form of
the k⊥ dependence, but also the width of the Gaussian,
evolves with Q. More precisely, at small k⊥, Gaussian pa-
rameterization can be used, but the width evolves with
Q. At larger k⊥, the form of the k⊥ dependence is de-
termined mainly by gluon radiation and deviates greatly
from a Gaussian; it also evolve with Q. In Fig. 5, we see
an example for the evolution of the Gaussian parameter-
ization at small k⊥; in Fig. 6, we see the evolution of the
shape at large k⊥. It is also important to use the compre-
hensive TMD evolution rather than a separate evolution
of the transverse and longitudinal dependences. We show
an example in Fig. 7.

The last thing we would like to mention regarding

TMD parameterizations is the TMD library (TMDlib).
We are happy to see that an initial version was created
[114] in 2014 and that it was updated recently.

6 Summary and outlook

In summary, by comparing the studies with what we did
in constructing the theoretical framework in studying
one-dimensional imaging of the nucleon with inclusive
DIS, we presented a brief overview of available results
on the studies of three-dimensional imaging of the nu-
cleon with SIDIS and other semi-inclusive reactions. We
summarized in particular the general form of the TMDs
defined via quark–quark correlators for both TMD PDFs
and FFs. We emphasized the theoretical framework for
semi-inclusive reactions at LO pQCD but with leading
and higher twist contributions consistently. This theo-
retical framework was obtained by applying the collinear
expansion technique developed in the 1980s for inclusive
DIS to these semi-inclusive processes. We summarized
in particular how it applies to all high energy processes
involving one hadron. The results obtained in such a
framework should be used as starting points for studying
TMDs experimentally.

Finally, we emphasize that three-dimensional imaging
of the nucleon has been a hot and rapidly developing
topic in recent years. Many advances have been made,
and many questions are open. We see in particular that
frameworks at LO pQCD and leading and higher twists
for processes involving one hadron can be constructed
using collinear expansions. A factorization theorem for
leading twist but with LO and higher-order pQCD con-
tributions and QCD evolution equations for unpolarized
TMD PDFs and the Sivers functions have also been
established. Especially in view of the operational and
planned facilities such as electron–ion colliders, we ex-
pect even more rapid development in coming years.

This overview is far from complete. We apologize for
omitting many aspects, such as the generalized parton
distributions, the Wigner function, model calculations
of TMDs, the nuclear dependences, and the hyperon
polarization.
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