2,859 research outputs found

    Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods

    Get PDF
    We report metalorganic vapor-phase epitaxial growth and structural and photoluminescent characteristics of ZnO nanorods. The nanorods were grown on Al2O3(00.1) substrates at 400 degreesC without employing any metal catalysts usually needed in other methods. Electron microscopy revealed that nanorods with uniform distributions in their diameters, lengths, and densities were grown vertically from the substrates. The mean diameter of the nanorods is as narrow as 25 nm. In addition, x-ray diffraction measurements clearly show that ZnO nanorods were grown epitaxially with homogeneous in-plane alignment as well as a c-axis orientation. More importantly, from photoluminescence spectra of the nanorods strong and narrow excitonic emission and extremely weak deep level emission were observed, indicating that the nanorods are of high optical quality. (C) 2002 American Institute of Physics.open1110681105sciescopu

    Local structure around Ga in ultrafine GaN/ZnO coaxial nanorod heterostructures

    Get PDF
    The structure of tubular GaN coaxially grown on ZnO nanorods with thickness of 6-12 nm was investigated using x-ray absorption fine structure (XAFS) at the Ga K edge. The XAFS measurements revealed that the GaN had a distorted-wurtzite structure, and that there were more distortions in the bond length of Ga-Ga pairs than in Ga-N pairs. However, no extra disorders were observed in any of the pairs. These results strongly suggest that Ga atoms first bonded to the ZnO template. Unlike other techniques, the XAFS determines structure around a selected species atom in nano-heterostructures. (c) 2006 American Institute of Physics.open1188sciescopu

    Orientation-dependent x-ray absorption fine structure of ZnO nanorods

    Get PDF
    The local structure of two samples of vertically well-aligned ZnO nanorods with average diameters of 13 and 37 nm were studied using orientation-dependent x-ray absorption fine structure (XAFS) at the Zn K edge. The aligned ZnO nanorod samples were fabricated on sapphire (0001) substrates with a catalyst-free metalorganic vapor-phase epitaxy method. The XAFS measurements showed that both nanorod samples have a well-ordered wurtzite structure and that no vacancy was observed at either site of zinc or oxygen atoms. However, we found that in both samples the lattice constants of a and b were shrunken by similar to0.04 Angstrom while c was elongated by similar to0.1 Angstrom, compared with those of their bulk counterparts. Furthermore, there was a substantial amount of disorder in the bond length of the only Zn-O pairs located near the ab plane. This may suggest that the terminating atoms at the boundaries of the nanorods are oxygen atoms. (C) 2005 American Institute of Physics.open114545sciescopu

    Ferromagnetic properties of Zn1-xMnxO epitaxial thin films

    Get PDF
    We report on ferromagnetic characteristics of Zn1-xMnxO (x=0.1 and 0.3) thin films grown on Al2O3(00.1) substrates using laser molecular-beam epitaxy. By increasing the Mn content, the films exhibited increases in both the c-axis lattice constant and fundamental band gap energy. The Curie temperature obtained from temperature-dependent magnetization curves was 45 K for the film with x=0.3, depending on the Mn composition in the films. The remanent magnetization and coercive field of Zn0.9Mn0.1O at 5 K were 0.9 emu/g and 300 Oe, respectively. For Zn0.7Mn0.3O, the remanent magnetization at 5 K increased to 3.4 emu/g. (C) 2002 American Institute of Physics.open11509532sciescopu

    Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition

    Full text link
    © 2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85% ±0.88% which outperforms other feature models
    corecore