2,228 research outputs found

    PARENTAL SUPPORT AND ENGLISH ACHIEVEMENT: THE MEDIATING ROLE OF ACADEMIC SELF-CONCEPT

    Get PDF
    The contribution of parental support to academic achievement has been adequately explored. However, the mediating mechanisms between parental support and academic achievement should be more studied, especially in teaching English as a foreign language (EFL). Consequently, this study was designed to examine whether academic self-concept a mediating between parental support and academic achievement among Chinese EFL learners. Participants were 499 Chinese secondary EFL learners selected through convenience sampling. The relationship between parental support, academic self-concept, and English achievement was explored by structural equation modelling analysis (SEM) and mediation analysis while controlling for gender and age. Results showed that parental support could affect English achievement directly and indirectly through academic self-concept. Additionally, academic self-concept fully mediated the relationship between parental support and English achievement. Theoretical and practical implications, limitations and directions for future research are discussed.  Article visualizations

    A Linkage Based Imputation Method for Missing SNP Markers in Association Mapping

    Get PDF
    Association mapping has been widely used in detecting genetic markers associated with traits of importance in research areas such as plant breeding, human disease and animal breeding. In recent years, various useful statistical methods and computing tools have been developed for association mapping studies. One of the critical challenges in association mapping is missing markers

    Strategy for encoding and comparison of gene expression signatures

    Get PDF
    EXALT (EXpression signature AnaLysis Tool) enables comparisons of microarray data across experimental platforms and different laboratories

    The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    Get PDF
    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified loading schemes using p-version FE methods. These data are invaluable, but questions remain about their practical use, because the tabular databases of key results needed to support practical life analysis can occupy gigabytes of storage for only a few classes of geometries. The prospect of using such advanced numerical methods to calculate in real time only those K solutions actually needed to support a specific crack growth analysis is also tempting, but the stark reality is that the computational cost is still so high that the approach is not practical except for specific, critical application problems. Some thoughts are offered about alternative paradigms. Compounding approaches are some of the earliest building blocks of SIF development for more complex geometries. These approaches are especially attractive because of their very low computational cost and their conceptual robustness; they are, in some ways, an intriguing contrast and complement to the brute-force numerical methods. In recent years, researchers at NRC-Canada have published remarkable results showing how compounding approaches can be used to generate accurate solutions for very difficult problems. Examples are provided of some successes--and some limitations--using this approach. These closed-form, tabulated numerical, and compounding approaches have typically been used for simple remote loading with simple load paths to the crack. However, many significant cracks occur in complex stress gradient fields. This is a job for weight function (WF) methods, where the arbitrary stress distribution on the crack plane in the corresponding uncracked body (typically determined using FE methods) is used to determine K. Several significant recent advances in WF methods and solutions are highlighted here. Fueled by advanced 3D numerical methods, many new solutions have been generated for classic geometries such as surface and corner cracks with wide ranges of geometrical validity. A new WF formulation has also be developed for part-through cracks considering the arbitrary stress gradients in all directions in the crack plane (so-called bivariant solutions). Basic WF methods have recently been combined with analytical expressions for crack plane stresses to develop a large family of accurate SIF solutions for corner, surface, and through cracks at internal or external notches with very wide ranges of shapes, sizes, acuities, and offsets. Finally, WF solutions are much faster than FE or boundary element solutions, but can still be much slower than simple closed-form solutions, especially for bivariant solutions that can require 2D numerical integration. Novel pre-integration and dynamic tabular methods have been developed that substantially increase the speed of these advanced WF solutions. The practical utility of advanced SIF methods, including both WF and direct numerical methods, is greatly enhanced if the FM life analysis can be directly and efficiently linked with digital models of the actual structure or component (e.g., FE models for stress analysis). Two recent advances of this type will be described. One approach directly interfaces the FM life analysis with the FE model of the uncracked component (including stress results). Through a powerful graphical user interface, simplified FM life models can be constructed (and visualized) directly on the component model, with the computer collecting the geometry and stress gradient information needed for the life calculation. An even more powerful paradigm uses expert logic to automatically build an optimum simple fracture model at any and every desired location in the component model, perform the life calculation, and even generate fatigue crack growth life contour maps, all with minimal user intervention. This paradigm has also been extended to the automatic calculation of fracture risk, considering uncertainty or variability in key input parameters such as initial crack size or location. Another new integrated approach links the engineering life analysis, the component model, and a 3D numerical fracture analysis built with the same component model to generate a table of SIF values at a specific location that can then be employed efficiently to perform the life calculation. Some attention must be given to verification and validation (V&V) issues and challenges: how good are these SIF solutions, how good is good enough, and does anyone believe the life answer? It is important to think critically about the different sources of error or uncertainty and to perform V&V in a hierarchal, building-block manner. Some accuracy issues for SIF solutions, for example, may actually involve independent material behavior issues, such as constraint loss effects for crack fronts near component surfaces, and can be a source of confusion. Recommendations are proposed for improved V&V approaches. This presentation will briefly but critically survey the range of issues and advances mentioned above, with a particular view towards assembling an integrated approach that combines different methods to create practical tools for real-world design and analysis problems. Examples will be selectively drawn from the recent literature, from recent enhancements in the NASGRO and DARWIN computer codes, and from previously unpublished researc

    CMTR: Cross-modality Transformer for Visible-infrared Person Re-identification

    Full text link
    Visible-infrared cross-modality person re-identification is a challenging ReID task, which aims to retrieve and match the same identity's images between the heterogeneous visible and infrared modalities. Thus, the core of this task is to bridge the huge gap between these two modalities. The existing convolutional neural network-based methods mainly face the problem of insufficient perception of modalities' information, and can not learn good discriminative modality-invariant embeddings for identities, which limits their performance. To solve these problems, we propose a cross-modality transformer-based method (CMTR) for the visible-infrared person re-identification task, which can explicitly mine the information of each modality and generate better discriminative features based on it. Specifically, to capture modalities' characteristics, we design the novel modality embeddings, which are fused with token embeddings to encode modalities' information. Furthermore, to enhance representation of modality embeddings and adjust matching embeddings' distribution, we propose a modality-aware enhancement loss based on the learned modalities' information, reducing intra-class distance and enlarging inter-class distance. To our knowledge, this is the first work of applying transformer network to the cross-modality re-identification task. We implement extensive experiments on the public SYSU-MM01 and RegDB datasets, and our proposed CMTR model's performance significantly surpasses existing outstanding CNN-based methods.Comment: 11 pages, 7 figures, 7 table

    Mechanism and Role of Tumor Microenvironment in the Initiation and Progression of Bladder Cancer

    Get PDF
    Tumor microenvironment (TME) is a huge network, composed by tumor cells, tumor associated stromal cells, immune cells, cytokines and chemokines secreted by these cells, in which various cells communicate with each other. Bladder cancer is characterized of tendency of relapse, progression, metastasis because of the role of TME. With the application and development of new technologies recently, such as tumor bulk RNA-sequencing and singlecell transcriptome sequencing, the composition of TME for bladder cancer is increasingly clear and the complex cell-to-cell communication network is fully duged, which provides a new vision for the therapy of bladder cancer. This paper reviewed and further analysed the research hotspots of cellular components and extracellular matrix components of bladder cancer on the basis of the latest research progress

    Functional Remodeling of Benign Human Prostatic Tissues In Vivo by Spontaneously Immortalized Progenitor and Intermediate Cells

    Get PDF
    Tissue remodeling or regeneration is believed to initiate from multipotent stem and progenitor cells. We report here the establishment of two spontaneously immortalized adult non-tumorigenic human prostate epithelial cell lines, NHPrE1 and BHPrE1. NHPrE1 (CD133high/CD44high/OCT4high/PTENhigh) was characterized as a putative progenitor cell, and BHPrE1 (p63high/p53high/p21(WAF1)high/RBhigh) was characterized as a putative epithelial intermediate cell. Genomic analysis demonstrated an abnormal karyotype with genomic rearrangements including PTEN amplification in NHPrE1 and CTNNB1 (β-catenin) amplification in BHPrE1 cells. Embedded three-dimensional culture of NHPrE1 showed greater branching than BHPrE1. A tissue recombination-xenografting model was utilized to compare remodeling of human prostatic tissues in vivo. A series of tissue recombinants, made by mixing different ratios of human prostatic epithelial cells and inductive rat urogenital sinus mesenchyme, were grafted to the renal capsule of severe combined immunodeficient mice. Both cell lines were able to regenerate benign secretory ductal-acinar architecture in vivo, containing intact basal and luminal epithelial layers confirmed by the expression of appropriate CK profiles. Prostate-specific antigen, 15-lipoxygenase-2, androgen receptor, and NKX3.1 proteins were appropriately expressed in the regenerated epithelia. Regeneration of benign prostatic glandular structures could be achieved using as few as 10 NHPrE1 cells, whereas 200,000 BHPrE1 cells were required to achieve prostatic architecture. This suggests a greater proportion of progenitor/stem cells in NHPrE1 than in BHPrE1. These cell lines provide important data on progenitor and intermediate cell phenotypes and represent significant new tools for the elucidation of molecular mechanisms of human prostatic regeneration, pathogenesis, and carcinogenesis
    • …
    corecore