661 research outputs found

    The Andreev states of a superconducting quantum dot: mean field vs exact numerical results

    Full text link
    We analyze the spectral density of a single level quantum dot coupled to superconducting leads focusing on the Andreev states appearing within the superconducting gap. We use two complementary approaches: the numerical renormalization group and the Hartree-Fock approximation. Our results show the existence of up to four bound states within the gap when the ground state is a spin doublet (\pi\ phase). Furthermore the results demonstrate the reliability of the mean field description within this phase. This is understood from a complete correspondence that can be established between the exact and the mean field quasiparticle excitation spectrumComment: 6 pages, 5 figure

    Microscopic theory of the proximity effect in superconductor-graphene nanostructures

    Full text link
    We present a theoretical analysis of the proximity effect at a graphene-superconductor interface. We use a tight-binding model for the electronic states in this system which allows to describe the interface at the microscopic level. Two different interface models are proposed: one in which the superconductor induces a finite pairing in the graphene regions underneath, thus maintaining the honeycomb structure at the interface and one that assumes that the graphene layer is directly coupled to a bulk superconducting electrode. We show that properties like the Andreev reflection probability and its channel decomposition depend critically on the model used to describe the interface. We also study the proximity effect on the local density of states on the graphene. For finite layers we analyze the induced minigap and how it is reduced when the length of the layer increases. Results for the local density of states profiles for finite and semi-infinite layers are presented.Comment: 9 pages, 7 figures, submitted to Phys. Rev.

    Interpolative method for transport properties of quantum dots in the Kondo regime

    Full text link
    We present an interpolative method for describing coherent transport through an interacting quantum dot. The idea of the method is to construct an approximate electron self-energy which becomes exact both in the limits of weak and strong coupling to the leads. The validity of the approximation is first checked for the case of a single (spin-degenerate) dot level. A generalization to the multilevel case is then discussed. We present results both for the density of states and the temperature dependent linear conductance showing the transition from the Kondo to the Coulomb blockade regime.Comment: 8 pages, 3 figures, includes lamuphys.sty, submitted to the Proceedings of the XVI Sitges Conference on Statistical Mechanic

    Microscopic theory of Cooper pair beam splitters based on carbon nanotubes

    Full text link
    We analyze microscopically a Cooper pair splitting device in which a central superconducting lead is connected to two weakly coupled normal leads through a carbon nanotube. We determine the splitting efficiency at resonance in terms of geometrical and material parameters, including the effect of spin-orbit scattering. While the efficiency in the linear regime is limited to 50% and decay exponentially as a function of the width of the superconducting region we show that it can rise up to 100\sim 100% in the non-linear regime for certain regions of the stability diagram.Comment: 5 pages, 5 figure
    corecore