4,446 research outputs found

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Spinodal Decomposition and the Tomita Sum Rule

    Full text link
    The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The theory also gives good agreement with numerical results for the order parameter scaling function in three dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower bounds.Comment: 15 pages, 6 figure

    Temporal Effects of Agent Aggregation in the Dynamics of Multiagent Systems

    Full text link
    We propose a model of multiagent systems whose agents have a tendency to balance their decisions in time. We find phase transitions to oscillatory behavior, explainable by the aggregation of agents into two groups. On a longer time scale, we find that the aggregation of smart agents is able to explain the lifetime distribution of epochs to 8 decades of probability.Comment: 7 pages, 5 figure

    Measurement of Lagrangian velocity in fully developed turbulence

    Full text link
    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ=740R_{\lambda} = 740. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form EL(ω)=urms2TL/(1+(TLω)2)E^{L}(\omega) = u_{rms}^{2} T_{L} / (1 + (T_{L}\omega)^{2}), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR

    Overall time evolution in phase-ordering kinetics

    Full text link
    The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics of a system with conserved order parameter is investigated in the Bray-Humayun model and in the Cahn-Hilliard-Cook model. From the comparison of the structure factor in the two models the generic pattern of the overall time evolution, based on the sequence ``early linear - intermediate mean field - late asymptotic regime'' is extracted. It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature. The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in a simple way through the structure of the solution of the Bray-Humayun model.Comment: RevTeX, 14 pages, 18 figures, to appear in Phys. Rev.

    Phase Separation Kinetics in a Model with Order-Parameter Dependent Mobility

    Full text link
    We present extensive results from 2-dimensional simulations of phase separation kinetics in a model with order-parameter dependent mobility. We find that the time-dependent structure factor exhibits dynamical scaling and the scaling function is numerically indistinguishable from that for the Cahn-Hilliard (CH) equation, even in the limit where surface diffusion is the mechanism for domain growth. This supports the view that the scaling form of the structure factor is "universal" and leads us to question the conventional wisdom that an accurate representation of the scaled structure factor for the CH equation can only be obtained from a theory which correctly models bulk diffusion.Comment: To appear in PRE, figures available on reques

    The identification of mitochondrial DNA variants in glioblastoma multiforme

    Get PDF
    Background: Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. Results: Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. Conclusions: These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation

    Condensation vs. phase-ordering in the dynamics of first order transitions

    Full text link
    The origin of the non commutativity of the limits tt \to \infty and NN \to \infty in the dynamics of first order transitions is investigated. In the large-N model, i.e. NN \to \infty taken first, the low temperature phase is characterized by condensation of the large wave length fluctuations rather than by genuine phase-ordering as when tt \to \infty is taken first. A detailed study of the scaling properties of the structure factor in the large-N model is carried out for quenches above, at and below T_c. Preasymptotic scaling is found and crossover phenomena are related to the existence of components in the order parameter with different scaling properties. Implications for phase-ordering in realistic systems are discussed.Comment: 15 pages, 13 figures. To be published in Phys. Rev.
    corecore