226 research outputs found

    4-Dimensional BF Theory as a Topological Quantum Field Theory

    Full text link
    Starting from a Lie group G whose Lie algebra is equipped with an invariant nondegenerate symmetric bilinear form, we show that 4-dimensional BF theory with cosmological term gives rise to a TQFT satisfying a generalization of Atiyah's axioms to manifolds equipped with principal G-bundle. The case G = GL(4,R) is especially interesting because every 4-manifold is then naturally equipped with a principal G-bundle, namely its frame bundle. In this case, the partition function of a compact oriented 4-manifold is the exponential of its signature, and the resulting TQFT is isomorphic to that constructed by Crane and Yetter using a state sum model, or by Broda using a surgery presentation of 4-manifolds.Comment: 15 pages in LaTe

    Higher Algebraic Structures and Quantization

    Full text link
    We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are presumably more general. We extend the classical action in a d+1 dimensional topological theory to manifolds of dimension less than d+1. We then ``construct'' a generalized path integral which in d+1 dimensions reduces to the standard one and in d dimensions reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory the path integral over the circle is the category of representations of a quasi-quantum group. In this paper we only consider finite theories, in which the generalized path integral reduces to a finite sum. New ideas are needed to extend beyond the finite theories treated here.Comment: 62 pages + 16 figures (revised version). In this revision we make some small corrections and clarification

    Three-Dimensional Integrable Models and Associated Tangle Invariants

    Get PDF
    In this paper we show that the Boltzmann weights of the three-dimensional Baxter-Bazhanov model give representations of the braid group, if some suitable spectral limits are taken. In the trigonometric case we classify all possible spectral limits which produce braid group representations. Furthermore we prove that for some of them we get cyclotomic invariants of links and for others we obtain tangle invariants generalizing the cyclotomic ones.Comment: Number of pages: 21, Latex fil

    Degenerate Plebanski Sector and Spin Foam Quantization

    Full text link
    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact ensures that its spin foam quantization is given by the SU(2) Crane-Yetter model and allows to test various approaches of imposing the simplicity constraints. Our analysis strongly suggests that restricting representations and intertwiners in the state sum for Spin(4) BF theory is not sufficient to get the correct vertex amplitude. Instead, for a general theory of Plebanski type, we propose a quantization procedure which is by construction equivalent to the canonical path integral quantization and, being applied to our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic feature of this procedure is the use of secondary second class constraints on an equal footing with the primary simplicity constraints, which leads to a new formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references adde

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture

    A Lorentzian Signature Model for Quantum General Relativity

    Get PDF
    We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.Comment: 22 pages, latex, amsfonts, Xypic. Version 3: improved presentation. Version 2 is a major revision with explicit formulae included for the evaluation of relativistic spin networks and the computation of examples which have finite value

    Spin Foam Models of Riemannian Quantum Gravity

    Full text link
    Using numerical calculations, we compare three versions of the Barrett-Crane model of 4-dimensional Riemannian quantum gravity. In the version with face and edge amplitudes as described by De Pietri, Freidel, Krasnov, and Rovelli, we show the partition function diverges very rapidly for many triangulated 4-manifolds. In the version with modified face and edge amplitudes due to Perez and Rovelli, we show the partition function converges so rapidly that the sum is dominated by spin foams where all the spins labelling faces are zero except for small, widely separated islands of higher spin. We also describe a new version which appears to have a convergent partition function without drastic spin-zero dominance. Finally, after a general discussion of how to extract physics from spin foam models, we discuss the implications of convergence or divergence of the partition function for other aspects of a spin foam model.Comment: 23 pages LaTeX; this version to appear in Classical and Quantum Gravit

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Quantum Gravity and the Algebra of Tangles

    Full text link
    In Rovelli and Smolin's loop representation of nonperturbative quantum gravity in 4 dimensions, there is a space of solutions to the Hamiltonian constraint having as a basis isotopy classes of links in R^3. The physically correct inner product on this space of states is not yet known, or in other words, the *-algebra structure of the algebra of observables has not been determined. In order to approach this problem, we consider a larger space H of solutions of the Hamiltonian constraint, which has as a basis isotopy classes of tangles. A certain algebra T, the ``tangle algebra,'' acts as operators on H. The ``empty state'', corresponding to the class of the empty tangle, is conjectured to be a cyclic vector for T. We construct simpler representations of T as quotients of H by the skein relations for the HOMFLY polynomial, and calculate a *-algebra structure for T using these representations. We use this to determine the inner product of certain states of quantum gravity associated to the Jones polynomial (or more precisely, Kauffman bracket).Comment: 16 pages (with major corrections
    corecore