128 research outputs found

    Laser Nanopatterning of Colored Ink Thin Films for Photonic Devices

    Get PDF
    Nanofabrication through conventional methods such as electron beam writing and photolithography is time-consuming, high cost, complex, and limited in terms of the materials which can be processed. Here, we present the development of a nanosecond Nd:YAG laser (532 nm, 220 mJ) in holographic Denisyuk reflection mode method for creating ablative nanopatterns from thin films of four ink colors (black, red, blue, and brown). We establish the use of ink as a recording medium in different colors and absorption ranges to rapidly produce optical nanostructures in 1D geometries. The gratings produced with four different types of ink had the same periodicity (840 nm); however, they produce distant wavelength dependent diffraction responses to monochromatic and broadband light. The nanostructures of gratings consisting of blue and red inks displayed high diffraction efficiency of certain wavelengths while the black and brown ink based gratings diffracted broadband light. These gratings have high potential to be used as low-cost photonic structures in wavelength-dependent optical filters. We anticipate that the rapid production of gratings based on different ink formulations can enable optics applications such as holographic displays in data storage, light trapping, security systems, and sensors

    Toward biomaterial-based implantable photonic devices

    Get PDF
    Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies. Keywords: biomaterials; biocompatible; biodegradable; optics; photonicsUnited States. Department of Defense (Award FA9550-13-1-0068)National Institutes of Health (U.S.) (Award P41-EB015903)National Institutes of Health (U.S.) (Award R01-CA192878)National Science Foundation (U.S.) (Award CBET-1264356)National Science Foundation (U.S.) (Award ECCS-1505569

    Three-dimensional microstructured lattices for oil sensing

    Get PDF
    Monitoring of environmental contamination, including oil pollution, is important to protect marine ecosystems. A wide range of sensors are used in the petroleum industry to measure various parameters, such as viscosity, pressure, and flow. Here, we create an optical lattice mesh structure that can be used as an oil sensor integrated with optical fiber probing. The principle of operation of the sensor was based on light scattering, where the tested medium acted as a diffuser. Three different mesh-patterned structures were analyzed by optical imaging, light transmission, and scattering in the presence of supercut, diesel, and stroke oil types. The meshes were used as a medium for different types of oils, and the optical diffusion and transmission were studied in the visible spectrum. Angle-resolved measurements were carried out to characterize the light scattering behavior from the mesh structures. Different types of oils were identified on the basis of the optical behavior of the lattice structure. The fabricated mesh structures can be used as a low-cost measurement device in oil sensing

    Color-selective holographic retroreflector array for sensing applications

    Get PDF
    Corner cube retroreflectors (CCRs) have applications in sensors, image processing, free space communication and wireless networks. The ability to construct low-loss wavelength filters embedded in CCRs can enable the development of wavelength multiplexing, tunable lasers and photonic integrated circuits. Here we created an ~10-μm-thick holographic corner cube retroreflector (HCCR) array that acted as a color-selective wavelength filter and diffracted light at broad angles. Angle-resolved spectral measurements showed that the Bragg peak of the diffracted light from the HCCR array could be tuned from 460 to 545 nm by varying the incident angle. The HCCR array also exhibited a wavelength-selective tuning capability based on the rotation angle in the visible spectrum. HCCRs projected holographic images with the rotational property in the far field. The utility of the HCCR was demonstrated as optical temperature and relative humidity sensors that produced a visible colorimetric response for rapid diagnostics

    Carbon Nanotube Array Based Binary Gabor Zone Plate Lenses

    Get PDF
    Diffractive zone plates have a wide range of applications from focusing x-ray to extreme UV radiation. The Gabor zone plate, which suppresses the higher-order foci to a pair of conjugate foci, is an attractive alternative to the conventional Fresnel zone plate. In this work, we developed a novel type of Beynon Gabor zone plate based on perfectly absorbing carbon nanotube forest. Lensing performances of 0, 8 and 20 sector Gabor zone plates were experimentally analyzed. Numerical investigations of Beynon Gabor zone plate configurations were in agreement with the experimental results. A high-contrast focal spot having 487 times higher intensity than the average background was obtained

    Computational modelling of a graphene Fresnel lens on different substrates

    Get PDF
    In this work we studied tunable lensing effects of graphene Fresnel lens on different substrates with incident light of 850 nm and 1550 nm wavelengths.</p

    Glucose sensing with phenylboronic acid functionalized hydrogel-based optical diffusers

    Get PDF
    Phenylboronic acids have emerged as synthetic receptors that can reversibly bind to cis-diols of glucose molecules. The incorporation of phenylboronic acids in hydrogels offers exclusive attributes; for example, the binding process with glucose induces Donnan osmotic pressure resulting in volumetric changes in the matrix. However, their practical applications are hindered because of complex readout approaches and their time-consuming fabrication processes. Here, we demonstrate a microimprinting method to fabricate densely packed concavities in phenylboronic acid functionalized hydrogel films. A microengineered optical diffuser structure was imprinted on a phenylboronic acid based cis-diol recognizing motif prepositioned in a hydrogel film. The diffuser structure engineered on the hydrogel was based on laser-inscribed arrays of imperfect microlenses that focused the incoming light at different focal lengths and direction resulting in a diffused profile of light in transmission and reflection readout modes. The signature of the dimensional modulation was detected in terms of changing focal lengths of the microlenses due to the volumetric expansion of the hydrogel that altered the diffusion spectra and transmitted beam profile. The transmitted optical light spread and intensity through the sensor was measured to determine variation in glucose concentrations at physiological conditions. The sensor was integrated in a contact lens and placed over an artificial eye. Artificial stimulation of variation in glucose concentration allowed quantitative measurements using a smartphone’s photodiode. A smartphone app was utilized to convert the received light intensity to quantitative glucose concentration values. The developed sensing platform offers low cost, rapid fabrication, and easy detection scheme as compared to other optical sensing counterparts. The presented detection scheme may have applications in wearable real-time biomarker monitoring devices at point-of-care settings

    Laser-inscribed contact lens sensors for the detection of analytes in the tear fluid

    Get PDF
    Tears exhibit compositional variations as a response to ocular and systemic metabolic conditions, and they can therefore be used for the assessment of physiological health. Here, microfluidic contact lenses were developed as wearable platforms for in situ tear pH, glucose, protein, and nitrite ions sensing. The microfluidic system was inscribed in commercial contact lenses by CO2 laser ablation. The microchannel consisted on a central ring with four branches, and biosensors were embedded within microcavities located at the branches ends. The device was tested with artificial tears and colorimetric readouts were performed using a smartphone-MATLAB algorithm based on the nearest neighbor model. Sensors responded within a time range of 15 s, and yielded sensitivities of 12.23 nm/pH unit, 1.4 nm/mmol L−1 of glucose, 0.49 nm/g L−1 of proteins, and 0.03 nm/μmol L−1 of nitrites. Contact lens sensing platforms may provide on-eye tears screening with applications in the monitoring of the ocular health both in clinics and at point-of-care settings
    • …
    corecore