23 research outputs found

    Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction

    Get PDF
    Like many pixel-based additive manufacturing (AM) techniques, digital light processing (DLP) based vat pho-topolymerization faces the challenge that the square pixel based processing strategy can lead to zigzag edges especially when feature sizes come close to single-pixel levels. Introducing greyscale pixels has been a strategy to smoothen such edges, but it is a challenging task to understand which of the many permutations of projected pix-els would give the optimal 3D printing performance. To address this challenge, a novel data acquisition strategy based on machine learning (ML) principles is proposed, and a training routine is implemented to reproduce the smallest shape of an intended 3D printed object. Through this approach, a chessboard patterning strategy is developed along with an automated data refining and augmentation workflow, demonstrating its efficiency and effectiveness by reducing the deviation by around 30%

    Reprogramming Tumor Associated Macrophage Phenotype by a Polysaccharide from <i>Ilex asprella</i> for Sarcoma Immunotherapy

    No full text
    We report here the discovery of an acidic polysaccharide, namely IAPS-2, from the root of Ilex asprella, with anti-tumor activity via a repolarizing tumor associated macrophages (TAMs) phenotype. We obtained IAPS-2 polysaccharide from this herb based on acidity and found that IAPS-2 expressed the activity of promoting the secretion of anti-tumor cytokines in macrophages. Furthermore, we evaluated its anti-tumor effect on TAM cells, through the activation of nuclear factor-&#954;B (NF-&#954;B) and signal transducer and activator of transcription (STAT) signaling. In particular, in the tumor murine model, IAPS-2 demonstrated that it could significantly inhibit the growth of tumors via modulating the function of TAMs and increase the animal survival rate. In summary, IAPS-2, with a clearly illustrated chemical composition, potent anti-tumor activity, and a solid mechanism of action, may be developed into a valuable therapeutic tool for cancer immunotherapy

    Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality

    No full text
    Microbial community distribution in vegetables can affect their quality. This study analyzed the distribution of the microbial community at various stages during processing and storage with the microbial diversity analysis, and evaluated the correlation between the dominant bacteria and sensory quality of lettuce using correspondence analysis with multiple regression analysis. Results showed that the process of washing, cutting, then disinfection and dewatering could change the community distribution and dominant bacteria in lettuce, and maintain better texture, morphology, aroma, color qualities of lettuce. The total number of colonies and relative abundance of Xanthomonas in fresh-cut lettuce decreased, while Afipia and Ralstonia increased during processing and pre-storage (storage for 6 h, 12 h and 1 d). After storage for 3 d, the total number of colonies in lettuce increased (more than 5 log CFU/g), especially the relative abundance of Pseudomonas, which led to the obvious deterioration of the sensory quality of lettuce. Throughout the process, the number of Bacillus cereus, Staphylococcus aureus, and E. coli was less than 100 CFU/g and 3 MPN/g. The number of typical pathogenic bacteria, Salmonella, Listeria monocytogenes and E. coli O157:H7, was below the detection limit. Overall, the prevention and control of psychrotrophic Pseudomonas in lettuce was still necessary. These results will provide useful information for the fresh-cut lettuce industry

    Real-time Observational Water Level Data Stream Online Filtering Method with Hydrological Changes Semantic Constraints

    No full text
    Irregular environmental changes and occasional instrument malfunctions have made noises and exceptions in observational data prominence. Therefore, before processing real-time water level data online, data cleaning is urgently needed to ensure data quality. Since traditional data filtering methods didn't take the data change pattern into consideration, these methods have encountered some severe problems, including the poor adaptability of filter model, the low estimation precision and prohibitively high calculation cost. To overcome these shortcomings, this paper presents a hydrological change semantics constrained online Kalman filtering method: creating dynamic semantic mapping between real-time data changing pattern and the rules of spatial-temporal hydrological process evolution; implementing the change semantic constrained Kalman filtering method to support the adaptive parameter optimization. Observational water level data streams of different precipitation scenarios are selected for testing. Experimental results prove that by means of this method, more accurate and reliable water level information can be available

    ANGPTL1 attenuates colorectal cancer metastasis by up-regulating microRNA-138

    No full text
    Abstract Background Angiopoietin-like protein 1 (ANGPTL1) has been reported to suppress migration and invasion in lung and breast cancer, acting as a novel tumor suppressor candidate. Nevertheless, its effects on colorectal cancer (CRC) remain poorly defined. In this study, we aim to demonstrate the biological function of ANGPTL1 in CRC cells. Methods We explored ANGPTL1 mRNA expression in human CRC tissues and its association with prognosis. CRC cell lines overexpressing ANGPTL1 or with ANGPTL1 knocked down were constructed and analyzed for changes in proliferation, colony formation, migration and invasion. ANGPTL1-regulated microRNAs were analyzed, and microRNA inhibitor and mimics were used to explore the role of microRNA in ANGPTL1-associated biological function. Results ANGPTL1 mRNA expression was down-regulated in CRC tissues, and high ANGPTL1 expression predicted better survival in CRC patients. ANGPTL1 overexpression resulted in suppressed migration and invasion in vitro, and it prolonged overall survival in mouse models. By contrast, its down-regulation enhanced migration and invasion of CRC cells. MicroRNA-138 expression was positively correlated with ANGPTL1 mRNA level in CRC tissues and up-regulated by ANGPTL1 in CRC cells. In addition, the microRNA-138 inhibitor or mimics could reverse or promote the ANGPTL1-mediated inhibition of the migratory capacity of CRC cells, respectively. Conclusions This study is the first to demonstrate the biological function of ANGPTL1 in CRC cells. ANGPTL1 expression was down-regulated in CRC tissues and inversely correlated with poor survival. ANGPTL1 repressed migration and invasion of CRC cells, and microRNA-138 was involved in this process
    corecore