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A B S T R A C T   

Like many pixel-based additive manufacturing (AM) techniques, digital light processing (DLP) based vat pho-
topolymerization faces the challenge that the square pixel based processing strategy can lead to zigzag edges 
especially when feature sizes come close to single-pixel levels. Introducing greyscale pixels has been a strategy to 
smoothen such edges, but it is a challenging task to understand which of the many permutations of projected 
pixels would give the optimal 3D printing performance. To address this challenge, a novel data acquisition 
strategy based on machine learning (ML) principles is proposed, and a training routine is implemented to 
reproduce the smallest shape of an intended 3D printed object. Through this approach, a chessboard patterning 
strategy is developed along with an automated data refining and augmentation workflow, demonstrating its 
efficiency and effectiveness by reducing the deviation by around 30%.   

1. Introduction 

Vat photopolymerization technology is a widely used Additive 
Manufacturing (AM) method, with applications ranging from dental 
molds [1], 3D printed sports shoes [2] to hearing aids [3]. Users always 
seek better fidelity. This is, however, very challenging to achieve, not 
only because the improvement of printing resolution requires upgrading 
of the projection system, but also because light intended for a specific 
location often scatters or diffracts into surrounding locations, creating a 
halo of unwanted polymerization and enlarges features [4]. A 
commonly used approach is to introduce grayscale pixels to suppress the 
unwanted halo while maintaining the energy threshold for the printing 
region [5]. The distribution of such grey pixels can be optimized by 
simulating the light distribution from each pixel. In addition, a manip-
ulation of the halo distribution can also be used to create partially cured 
pixels that can help smoothen the transition between pixels, and elim-
inate stepping or jagged edges, akin to anti-aliasing techniques 
employed on images [6]. This enhances fidelity and facilitates the pro-
duction of intricately detailed, structurally robust components with 

fewer defects, thereby advancing the capabilities of 3D printing and 
enabling precise applications across various industries. However, a 
significant challenge is deciding how to distribute grayscale pixels to 
mitigate steps and achieve smoother edges in the 3D printed structure, 
which is still an open question. Simulating the light distribution and 
selectively allocating different greyscale pixels to achieve the target 
light distribution profile has been confirmed as a promising technique 
[7]. Such simulation based methods offer high accuracy, but also require 
significant computations for every layer of projection images and are 
costly to apply in practice. 

Other approaches in photopolymerization based 3D printing include 
direct or predictive modelling of the cure process to predict the solidi-
fication of ink under various UV intensities, often deploying inverse 
methods to identify the desired light distribution [8]. Such an optimi-
zation was used by He et al. [9], deploying an evolutionary algorithm 
combined with ink jet 3D printing to identify the necessary material 
distribution to achieve the desired function. These models, however, 
generally necessitate the measurement of the ink cure degree or me-
chanical performance. To achieve this, an additional characterization 
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step is necessary, which can be both time-consuming and intricate. 
Furthermore, handling the large-scale computations and simulations 
involved often demands the use of high-performance computers or 
parallel computing clusters. This requirement significantly increases the 
complexity of the entire process. 

A consideration here is applying machine learning (ML) to help 
simplify the process of allocating such greyscales to achieve the optimal 
light distribution. Unlike the simulation method that are often resource- 
intensive, ML, once trained, offers a data-driven approach to swiftly 
identify optimal configurations, reducing costs and enhancing printing 
efficiency. For example, Pattinson et al. [10] introduced an automated 
dataset refining process to establish a large database for training a model 
that can better optimize print quality. You et al. [11] and Guan et al. 
[12] used ML to mitigate scattering effects for significantly improving 
3D printing accuracy, enabling substantial enhancements for large-scale 
features (1 mm*1 mm). Zhao et al. [13] combined ML and an optimi-
zation evolutionary algorithm (EA) to obtain objective stress–strain 
curves fast and efficiently. A recent advance is that of Killgore et al. [14] 

where they assess the efficacy of a number of neural network based ML 
models to predict projection patterns, resulting in a substantive increase 
in the precision of their vat photopolymerization 3D printing. However, 
their protocol requires a relatively large amount of characterization data 
together with levels of computing power that may not be available in all 
labs. 

In this paper, a data-driven method is proposed to efficiently achieve 
greater shape accuracy, i.e., obtain structures that are closer to the 
desired geometry than is achievable with alternative methods. This is 
accomplished by introducing a data acquisition and model training 
strategy that reduces the requirement for data collection whilst 
improving the printing quality of the manufacturing process. This 
approach involves two ML steps, the first to acquire and expand the 
training data, and the second as a model to reveal the correlations be-
tween projection and printed pattern, and deploy that as a tool to realize 
better structures. The approach was tested against three different 
commercially available vat photopolymerization resins and a variety of 
challenge structures, showing significant improvements in all cases, 

Fig. 1. Conceptual diagram of (a) lab-built vat photopolymerization printing device based on digital micromirror device (DMD) based UV projector. (b) schematic 
showing the same projection pattern with different combination of greyscale pixels and therefore light intensity can give different solidification profiles; (c) on the 
basis of the phenomena showing in (b) training data acquisition and processing steps was developed to collect dataset for training a model to between the projection 
pattern and solidification profile; (d) traditional and CGAN based data augmentation process to extend the number of data points for training; (e) establishes the 
relationship between the projection pattern and the curing pattern through U-Net system; (f) the final performance assessment of the trained model. 
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including 3D objects. 

2. Methodology 

The approach of this paper aims to create a ML model that is able to 
understand the correlation between different combination of greyscale 
pixels and their cured pattern profile (Fig. 1a and 1b). Such a model can 
then be used to optimize the printed pattern profile by judicious spatial 
distribution of greyscale levels of pixels. A set of chessboard projection 
patterns was chosen as such an arrangement can maximize the breadth 
of adjoining pixel greyscale level combinations. The printed samples 
were then washed and their appearance captured using an optical mi-
croscope and processed in a semi-automated high-throughput manner 
for data refinement (Fig. 1c). They were then paired with the projection 
data to build a database for feeding and training the model. To expand 
this database to a more useful size, a trained conditional Generative 
Adversarial Network (CGAN) [15–17] (Fig. 1d) was also introduced to 
generate artificial data and therefore expand the database without 
additional experiments. The accumulation of data generation strategies 
led to 1200 pairs of chessboard data. The final U-net based neural 
network was trained with mixed experimental and artificial data, 
allowing us to uncover the projections needed to realize the desired 
features in manufactured objects (Fig. 1e)[18–21]. 

This approach was then tested by challenging the model to replicate 
intricate structures and devices, including filters and microfluidic 
channels, and determining the level of improvement that can be ach-
ieved via a machine learning method. This showed that the approach 
could improve the shape accuracy by 200 % for both 2D patterns 
(Fig. 1f) and 3D devices. 

2.1. 3D printer development and sample post-processing 

A lab-built vat photopolymerization printer (as shown in Fig. 2a) was 
configured with a UV projector (GVINDA, Production name PDC05-70, 
printing resolution 66–75 μm, Optical distortion 0.10 %) at 405 nm 
wavelength and 0.65 in. 6500 DMD chip. The resolution of the chip was 
1920 pixels by 1080 pixels. The build stage was immersed in the resin 
tank and after each layer was 3D printed, the build stage moved 
downward to allow a new layer of liquid resin to recoat the top surface. 
The UV pattern was projected onto the release film to form a solidified 
pattern on the build platform. (see Fig. 2b). During the 3D printing 
process, the UV projector was operated at a constant 25.6 mW/cm2 UV 

intensity with a 3 s exposure time. 
Three commercially available resins were used. The model was 

initially trained using transparent UV resin (Resin ‘A’, Anycubic Classic), 
followed by training with two other UV resins (Resins ‘B’, Creality UV 
sensitive resin White and ‘C’, Anycubic ABS-like Resin + Grey). These 
resins differ in material composition, color, and translucency, and were 
selected to demonstrate the model’s versatility in adapting to resin 
variations. 

2.2. Projection strategy 

The projected patterns were generated using a chessboard strategy, 
where one set of diagonals was fixed to black pixels (0) whilst the other 
set was composed of pixels where the greyscale values were randomly 
distributed from 0 to 255. The chessboard pattern enables maximization 
of the grayscale value distribution, with its interlocking light and dark 
areas effectively simulating and balancing the distribution of light across 
the printing surface. Moreover, the simple and regular structure of the 
chessboard pattern serves as an excellent approximation for the illu-
mination and curing processes of complex geometrical shapes. By 
analyzing the curing effects of these basic patterns through ML, the in-
sights gained can be extended to more intricate patterns and structures, 
thereby optimizing the entire printing process. Each 2D ‘chessboard 
pixel’ was defined to be composed of a 4x4 set of ‘projector pixels’, and 
then a projection was generated to form an 8x8 chessboard. This strat-
egy was chosen to ease fabrication and characterization but can be 
scaled trivially to 2x2 projector pixels or further as desired. Subse-
quently in this paper, the term ‘pixel’ will be used to refer to a ‘chess-
board pixel’. Twenty chessboard patterns were produced in a single 
batch, and in total 300 were produced. 

2.3. Data acquisition 

The 3D printed samples were washed using an ultrasonic cleaning 
machine and then dried naturally. The samples were imaged with an 
optical microscope (KEYENCE, VHX-1000), followed by threshold pro-
cessing with a threshold value of 127 to generate binary images (see the 
Supplementary Information). Registration of the image was ensured via 
fixing of the top-left corner and bottom-right corner pixels to value 255 
in all projections (see Fig. 3a). 

The binary image and the projection pattern were then aligned by 
shifting and rotating each image in discrete steps and selecting the 

Fig. 2. Schematic diagram of the lab-built vat photopolymerization printer: (a) and the appearance of the whole system and the printing section (b) schematic of the 
printer’s setup. 
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combination that gave rise to the strongest overlap (see Fig. 3b and 
Supplementary Section 2). 

2.4. Data refining 

Due to the noisiness of the data emerging from the manufacturing / 

data collection workflow, the next step was data refinement and cura-
tion (Supplementary Figure S2). The detailed strategy can be found in 
Supplementary Section 3. In summary, this process is able to identify the 
error data caused by reflection of light during optical microscopy pro-
cess without falsely removing any real data (Supplementary Fig. S2b-B). 

In addition, directly using the image to train the model would cost a 

Fig. 3. Calibration of binary image to form datasets with the projection pattern: (a) chess board design with calibration points; (b) automated fine-tune the binary 
image to match the projection pattern. 

Fig. 4. Schematic of the data argumentation strategies used in this study: (a) Traditional data augmented methods to expand data through geometric transformation 
and (b) Conditional Generative Adversarial Network (CGAN) was trained and used to generates data that can further expand data pattern diversity. 
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considerable amount of time. To increase the efficiency, the image 
profiles can be extracted according to the gradient value and direction: 
where the edge of the shape appears, its gradient is always perpendic-
ular to the edge. The approach accurately converted a figure pattern into 
profiles (see Supplementary Fig. S2f), which considerably reduces the 
computational burden during the training process [22] and as a result, 
the training speed was increased by 5 times so that the processing time 
of each pair of data is reduced from 890 ms to 178 ms (Supplementary 
Section 4 Table S2). 

2.5. Data augmentation 

During the ML process, the size of the training dataset significantly 
influences the performance of the final model. However, in practice, 
collecting a large training dataset by physically 3D printing thousands of 
samples is time-consuming and can substantially increase both time and 
labor costs. According to the experimental process of data collection, it 
was calculated that it takes approximately 65 min for one batch (20 
samples), including 2 min for operating the projection device and 
placing the coverslip, 3 min for projection, cleaning, and air drying, and 
60 min for capturing microscope images. Therefore, data augmentation 
[23] was employed to expand the dataset using both traditional data 
augmentation and CGAN. 

2.5.1. Traditional data augmentation 
Using traditional data augmentation techniques, rotation was 

initially applied to the 300 sets of experimental data, including projec-
tion images and its corresponding microscope images after threshold 
segmentation (see Fig. 4a). These methods can effectively increase the 
diversity of training data and improve the generalization ability of the 
model. However, traditional data augmentation is constrained by the 
data distribution, and the generated samples cannot cover the entire 
data space. Therefore, when the traditional data augmentation reaches a 
certain amount of data, it not only has no further benefits for model 
training, but also increases the model’s training time[23,24]. As a 
consequence, traditional data augmentation methods were used to in-
crease the training dataset from 300 to 600 sets of data. 

2.5.2. Conditional Generative Adversarial networks (CGAN) 
In order to enhance the pattern diversity and increase the data 

available, a Pix2Pix model, which is a type of CGAN, was integrated into 
the approach to augment the training data. A trained Pix2Pix CGAN 
aims to generate corresponding output images from a conditioned input 
image [25]. It normally contains a U-net based architecture and 
discriminator. The training process include feeding the system with 
paired input data and output data to help the model establishing cor-
relations between them and therefore when it receives an input data, it is 
able to predict and draw an output data based on the how it was trained. 
Although widely used in AI drawing, this could also be used in our data 
augmentation as our data pairs are paired conditioned patterns. This can 
provide an effective solution to the problem of limited data and greatly 
improve the accuracy. Such a protocol has been used before by Lakmal 
[26] and Liu [27] for data augmentation in which they confirmed that 
Pix2Pix can perform precise image-to-image mapping, such as con-
verting sketches to detailed images or transforming daytime photos into 
nighttime scenes, thereby enhancing the diversity of the dataset. It has 
also demonstrated the capability to generate realistic synthetic images, 
effectively augmenting the amount of data available for model training. 

The CGAN [28] is capable of generating data based on a generator. In 
our case, the generator accepts a randomly generated pattern alongside 
a grayscale chessboard pattern as inputs to produce a profile of the cured 
pattern. It is the role of the discriminator to determine whether the data 
is generated or real (see Fig. 4b). 

The loss function used in the training process of CGAN is as follows: 

min
G

max
D

V′(D,G) = Ex Pdata(x)[log D(x|y) ]+Ez Pz(z)[log(1 − D(x,G(y|z) ) ) ]

(1)  

Here, y represents the given condition, x is the real data corresponding 
to condition y, z is the random noise input to the generator, G(y|z) is the 
data generated by the generator based on condition y and noise z, and D 
(x|y) is the probability estimate by the discriminator that the given data 
x under condition y is real. 

In order to generate the 3D printed profile that is similar to the real 
situation, we utilized the Stochastic Gradient Descent [29] method to 
optimize the generating parameters (detailed below): 

θG
′←θG +α 1

m
∑m

i=1

∂log(1 − D(G(zi|yi) ) )

∂θG
(2)  

where θG is the adjustable parameter in the generated model which 
controls the behavior of the generator and determines how the generator 
generates samples from random noise. (By adjusting the value of θG, we 
can change characteristics such as the quality, diversity, and authen-
ticity of the samples generated by the generator). α is the learning rate, 
m is the number of samples, D is the discriminator and zi and yi represent 
separately a generator input and the corresponding condition label. 

By implementing the CGAN strategy, the 600 datasets obtained from 
traditional data augmentation were further expanded to a total of 1200 
datasets. It is worth noting that due to limitations in computing power, it 
is not practical to train a dataset larger than 1200 in our case, but in 
principle the dataset can be enlarged with more computational power. 

2.6. Model training with u-net model 

The U-Net architecture was originally customized for biomedical 
image segmentation, distinguished by its ability to capture global in-
formation and preserve detailed features within images. This structure 
enhances the understanding of input images and enables accurate pixel- 
level predictions. Therefore, it is highly suitable for image translation 
tasks requiring high precision, facilitating the precise establishment of 
relationships between grayscale projection images and binary images, 
corresponding to the profile printed by different grayscale pixels, to 
achieve accurate pixel-level predictions. 

In the U-NET implementation, a hyperbolic tangent activation 
function [30] was used, which is subsequently mapped to 0 to 255 to 
achieve the final grayscale image. As per the training, a cross entropy 
loss function [31] (Supplementary Equation S5) was used to compare 
the difference between the predicted and the real data and similarly a 
stochastic gradient descent [32] was employed to update model pa-
rameters (see Supplementary Section 6). 

Fig. 5 illustrates the model training process. The training dataset was 
partitioned into two groups: the training group (contained 80 % of the 
dataset: 960 pairs of data) and the validation group (contained the 
remaining 20 % dataset: 240 pairs of data). The training group was 
employed to train the ML model, thus establishing the correlation be-
tween the projected pattern grayscale image and the 3D printed profile 
data. The validation group is tasked with testing the model’s perfor-
mance on unseen data to adjust its training parameters. The detailed 
steps are given in the supplementary information. 

Subsequently, the 3D printed profiles from the validation group were 
input into the trained model to generate the corresponding projection 
pattern. By comparing the generated projection pattern with the original 
projected pattern, the deviation could be measured and the model 
refined. To evaluate the discrepancy between the computed projected 
pattern and the original projected pattern, the Mean Squared Error 
(MSE) mode was utilized. It is worth noting that MSE is a method used to 
observe the training process and does not replace the loss function. The 
MSE is given by 
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MSE =
1
n
∑n

i=1
(Yi − Ŷi)

2 (3)  

where n is the number of samples, Yi is the actual data, Ŷi is the pre-
dicted data from the trained model. 

2.7. Metrics for quantitatively evaluation 

In order to evaluate the performance of the model and quantifying its 
accuracy, two coefficients were introduced to quantitatively assess 
shape accuracy of the 3D printed structure. The computation of these 
two coefficients is carried out directly by an existing module in an open- 
source Python library. However, it is important to note that prior to 
invoking the module for computation, the printed output needs to un-
dergo data processing for automatic calibration (Section 2.4). 

Dice coefficient 
Dice coefficient is commonly used in image processing to assess the 

amount of overlap and therefore similarity between two pictures. 
Therefore, this coefficient was introduced to quantify the performance 
of ML process. 

(4)  

Where X and Y represent two sets, |X| denotes the cardinality of set X, | 
Y| denotes the cardinality of set Y, and |X ∩ Y| denotes the cardinality of 
the intersection of X and Y. The range of the Dice coefficient is between 
0 and 1, the coefficient approaching 1 means the two images have high 
similarity. 

Hausdorff distance 
In addition, another metric, the Hausdorff distance, was incorpo-

rated. The Hausdorff distance places greater emphasis on accurate 
matching and is widely employed in the detection of positional errors 

and other feature extraction methods. 

(5)  

In this context, d(x, y) represents the distance between x and y, while 
’sup’ and ’inf’ denote the upper and lower limits, respectively. 

While both the Dice coefficient and Hausdorff distance are essential 
for evaluating image shape accuracy, they address distinct aspects of 
segmentation accuracy. The Dice coefficient emphasizes overall simi-
larity between target and actual outcomes, serving as a reliable indicator 
of general accuracy. On the other hand, the Hausdorff distance high-
lights the maximum boundary difference, offering crucial insights into 
key point precision. By combining these metrics, a holistic evaluation is 
achieved, ensuring results that are not only accurate overall but also 
precisely delineated. For more details, please refer to our supplementary 
information. 

3. Result and discussion 

3.1. The improvement of the model versus the training data 

Fig. 6 illustrates the evolving 3D printed sample quality as the 
number in the training dataset increased. It’s evident that when 100 
datasets were fed into the model, the snowflake printed from the 
generated data still contained a significant number of errors. Some 
detailed structures, such as branches were merged together. However, as 
the number of training data increases, the quality of the printed snow-
flake started to improve, exhibiting enhanced details and accuracy. The 
branches of the snowflake became clearer, and the overall pattern 
appeared more symmetrical than before. To describe this evolution 
more accurately, the evolution of snowflake fidelity with the number of 

Fig. 5. Model training process: (A) acquisition and processing of chessboard data to obtain final training data; (B) datasets partitioning, model training 
and validation. 
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datasets was quantified using the Dice coefficient [33] and Hausdorff 
distance [34] (see Section 2.7). Hausdorff distance significantly de-
creases with the increase of model training data, while Dice coefficient 
gradually increases (see Fig. 6 g-h), indicating that the snowflake 
pattern 3D printed is getting closer to the target. Significance testing also 
confirms that this improvement is statistically significant. 

In addition, with the help of MSE, it is possible to monitor the 
training progress and it was found that a lower MSE value was achieved 
as the number of epoch increase. This indicated a more accurate pre-
diction of the projected pattern when a target structure is input, which 
means a greater proficiency of the model at capturing the correlation 
between the projected pattern and the actual 3D printing profile (Sup-
plementary Figure S6). 

3.2. Performance test with simple patterns 

In order to evaluate the performance of the model trained through 
the approach, the model was challenged with two pixel-scale designs: a 
circle and a triangle (see Fig. 7). It can be seen from Fig. 7A1 and A3, due 
to limitations in 3D printing resolution, a circle with a diameter of 3 
pixels will be sliced into a simple cross, thus failing to achieve the 
intended design. However, after optimization by the trained model, such 
small curvatures could be achieved with the correct combination of 
grayscale pixels. 

In Fig. 7A3 and B3, the outer profile of the designs as well as the 
actual 3D printed sample profile were extracted from the projection 
patterns before and after optimization. It can be seen that the maximum 
deviation distance before optimization (H1) is considerably larger than 
that with the optimized pattern (H2). 

Using the two coefficients allowed for quantitative comparison of 
shape accuracy improvements. The Dice coefficient and Hausdorff dis-
tance quantitatively assess the enhancement from two different per-
spectives. Following model optimization, both simple pattern’s Dice 
coefficients increased by around 10 % (as seen in Fig. 7C1), indicating a 
similarly overall improvement. However, in terms of the maximum 
boundary difference measured by the Hausdorff distance, the improve-
ment in the triangular design was not as good as the circular structure, 

the accuracy of the design improved by 80 % for the triangle and around 
300 % for the circle design (as seen in Fig. 7C2). It was noticed that the 
key deviation came from the conner of the triangle structure. Such 
shapes with sharp corners are more sensitive to small deviations and this 
can be better captured by Hausdorff distance. The significant reduction 
of both parameters suggests that the 3D printed shape now possesses 
much higher fidelity than before. Remarkably, this improvement was 
achieved without any hardware upgrades. 

3.3. Performance assessment with complex patterns 

To further assess the effectiveness of the optimization method, the 
model was challenged with complex, small patterns (see Fig. 8). 

From Fig. 8a, it can be observed that the antennae of the butterfly 
(location i) more closely matched the designed pattern when using the 
model. While both patterns were unable to reproduce the hollow pat-
terns in the butterfly wings fully, the optimized version still exhibits 
improved printing quality and captures more hollow structures than the 
non-optimized version (locations ii and iii). 

Similar enhancements are evident in the bug and watermelon pat-
terns, demonstrating the higher fidelity achievable with the trained 
model. In the bug pattern, the bug’s leg, measuring only around 20 µm, 
showed considerable improvement, in regard to the curvature and void. 
For the bug 3D printed with the non-optimized pattern, the bug’s legs 
tended to merge together, with significantly poorer detailing (locations 
iv and v). 

Similar improvements are also observable in the watermelon pattern, 
which contains both large (location vii) and small curvatures (location 
vi). The sample 3D printed by the non-optimized patterns tends to 
reproduce these curvatures as either right angles (location vii) or zig-zag 
paths (location vi). The trained model improves this, eliminating such 
step-like appearances and therefore helped to better reproduce the 
curvature in the original design. 

As previously, the Dice coefficient was utilized to quantify the 
improvement in the samples 3D printed with and without optimization. 
As can be seen from Fig. 8b, the shape accuracy of the pattern improved 
by approximately 10–20 % on average. The Hausdorff distance also 

Fig. 6. The effects of data augmentation methods: (a) desired target and (b) the profiles of target; (c) snowflakes 3D printed by a model trained using 100 datasets 
and (d), (e), (f) snowflakes 3D printed by a model trained on 300, 600, 1200 sets of training data, respectively; (g) and (h) quantify the evolution of snowflake fidelity 
with the number of datasets by Hausdorff distance and Dice coefficient. Significance was assessed using a one-way Anova with post hoc Tukey’s test (* denotes p <
0.05 between the two, ** denotes p < 0.01, and *** denotes p < 0.001). 
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showed similar trends as given in Supplementary Figure S7. In terms of 
the Dice coefficient performance, both simple and complex patterns 
showed improvements of around 10–20 % after optimization. However, 
a comparison based on the Hausdorff distance revealed that the 
improvement in the simple patterns was 4–15 times greater than that in 
the complex patterns. This disparity may be attributed to the diverse 
features present in complex patterns, such as very sharp corners, for 
which our current training data may not be sufficient for optimal opti-
mization. Future research efforts could focus on augmenting the training 
data with detailed structures to further enhance optimization accuracy. 

Experimental results with Hausdorff distance and Dice coefficient 
highlight the efficacy of grayscale processing in smoothing edges and 
closely approximating the target image, underlining the importance of 
precise pixel-level control to prevent edge inaccuracies [6]. The study 
demonstrates the ML model’s effectiveness, though it reveals that while 
both metrics are crucial for assessing image fidelity, they yield different 
degrees of improvement due to their focus on varying aspects of seg-
mentation accuracy (see Section 2.7). 

3.4. Validating the model performance with multi-layer structures 

To demonstrate the model can help improve the print quanlity in vat 
polymerization process, two potential applications were introduced: 3D 

printed filter and microfluidic channels as demonstration. 

3.4.1. Filter 
The first application of this involves fabricating filters with smaller, 

more accurate holes. Using vat photopolymerization to fabricate filter or 
similar mesh structures is challenging. Although fabricating holes with 
diameters spanning dozens of pixels isn’t problematic, when this 
diameter is reduced to a few pixels, traditional methods fail to reproduce 
the correct structures, often leading to completely obstructed voids. 

Here, two different types of holes were induced: circular and trian-
gular with 3D printing of multi-layer samples (1–3 layers) to produce a 
2 mm*2mm*0.15 mm filter. As shown in Fig. 9, when the size of the 
circular hole was around 5.2 pixels, the sliced pattern began to display a 
diamond pattern instead of a circular one. This situation worsened as the 
hole diameter decreased further, resulting in a 2.6 pixel hole sliced to 
only one pixel (Fig. 9). This led to the designed hole being fully blocked. 
However, with the trained model, a new set of projection patterns 
containing grayscale combinations at the border of the designed hole 
was generated to better reproduce the intended shape. It’s evident that 
the accuracy of the final hole is improved, and the system is capable of 
achieving smaller through holes that were previously unattainable. 

In addition to single-layer patterns, the impact of multi-layers was 
also examined (see Fig. 9). The holes were assessed, and the partially 

Fig. 7. Two pixel-scale designs 3D printed to verify the model effect: (A1) a 3D printed circle with a diameter of 3 pixels before optimization and (A2) a 3D printed 
circle with a diameter of 3 pixels after optimization by the proposed method; (A3) the overlap of the 3D printed circle and the target circle; (B1) a 3D printed triangle 
with sides 3 pixels long before optimization and (B2) a 3D printed triangle with sides 3 pixels long after optimization; (B3) the overlap of the 3D printed triangle and 
the target triangle; (C1) Dice coefficient and (C2) Hausdorff distance. Significance was assessed using a one-way Anova with post hoc Tukey’s test (* denotes p < 0.05 
between the two, ** denotes p < 0.01, and *** denotes p < 0.001). 
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blocked holes are labelled by the symbol ⊙ and fully blocked ones by ●. 
It can be seen that, with the assistance of the model, the blockage of 
holes was significantly reduced for both single-layer and multi-layer 
structures, suggesting a good efficiency of the model. A similar effect 
was also observed in triangular holes. With the proposed model, smaller 
through holes with better fidelity were achieved compared to the non- 
optimized patterns. For the ‘large’ holes (3–5 pixels), their shape accu-
racy also improved. However, it is worth noting that even though our 
model is able to increase the success rate of printing small holes, smaller 
holes (2–3 pixels) tended to block as the number of layers increased. This 
was owing to our model being trained on 2D data that doesn’t incor-
porate interaction between layers. In actual printing, the projected light 
can penetrate through layers and cause curing in previously generated 
layers. 

3.4.2. Microfluidics 
Microfluidic chips [35] present another application for AM that re-

quires high fidelity of 3D printing for achieving small channels. In DLP 
printing, small channels (2–4 pixels) could be blocked by the halo of 
surrounding white pixels for structuring the side wall of the channels. 
Given this, the model was challenged with a designed mini microfluidic 
device that included a reservoir and a set of branched channels with 
stepped channel dimensions, ranging from 7 pixels down to just 2 pixels. 
The 3D printed chip (as shown in Fig. 10f-g) has a size of 9 mm*9 
mm*0.25 mm with channels embedded. All the channels contain three 
layers, each layer being 50 μm in height, resulting in a total channel 
height of 0.15 mm. 

When 3D printing with non-optimized patterns, blockages started to 
occur when the channel diameter reached the 5–6 pixel range. As 
demonstrated in Fig. 10a-e, upon flowing a fluorescent dye through the 
microfluidic device, it could only penetrate through channels with a 
minimum of 5 or 6 pixels in diameter, with channels smaller than this 
being partially blocked. 

Conversely, when the printing pattern was optimized with the 
trained model, the generated grayscale pattern was able to reproduce 
through channels with better accuracy. Besides, the optimized channel 

width is also closer to the designed width. As shown in Fig. 10h, the 
unoptimized channel width has a larger deviation from the design and 
this deviation will increase the width decreases. In the meanwhile, the 
channels printed from the optimized pattern are more consistent and 
similar to the designed width. This is likely due to the introduction of 
greyscale pixels on the edge of the channel helped suppressing the halo 
of previously used white pixels and therefore suppressed the excessive 
curing that was causing channel blockage. 

The enhancement of printing precision is important for 3D printed 
microfluidic device as it allows fabricating more compacted device with 
better control of their flow. However, achieving this is not that 
straightforward as it include either purchasing a more expensive pro-
jector or careful tuning the distribution of grey pixels [36] which could 
be either expensive or time consuming. In contrast, the utilization of ML 
methods to predict grayscale projection images enables the printing of 
details around 100 μm while accelerating the entire process. 

3.5. Compatibility of the model with different inks 

To ascertain the compatibility of the machine learning model with 
various ink formulations, the 3D printing process was extended to two 
additional inks: Resin ‘B’ (White, Brittle), Resin ‘C’ (Grey, ABS-Like) 
(Supplementary Fig. S8b). Different inks have different reactivities, 
necessitating adjustments to the intensity of the grayscale pixel in the 
optimized pattern. We selected the 3D printing parameter used for 
training as the standard and designed a crosshair map to determine the 
required adjustment level for alternative inks. The crosshair map con-
tains an array of 256 cross-hairs with grayscale values ranging from 0 to 
255 (Supplementary Fig. S8a). For the control ink (used for model 
training), the last successfully 3D printed crosshair was at an intensity of 
96 (Supplementary Fig. S8c left). Implementing the same 3D printing 
parameters for the two additional ink candidates revealed the disap-
pearance of the cross-hair at intensities of 82 and 69 for Resin ‘B’ and 
Resin ‘C’, respectively (Supplementary Fig. S8c mid and right). Based on 
these results, the overall intensity of the optimized grayscale pattern was 
modified for each resin. As depicted in Fig. 11b-d, after adjusting the 

Fig. 8. Complex and small patterns printed to verify the model performance: (a) target pattern, projected image and 3D printed structure before and after opti-
mization; (b) Dice coefficient of the printed patterns. Significance was assessed using a one-way Anova with post hoc Tukey’s test (* denotes p < 0.05 between the 
two, ** denotes p < 0.01, and *** denotes p < 0.001). 
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intensity of the optimized grayscale patterns, the trained model 
demonstrated a similar optimization level with different ink formula-
tions. Calculating the Dice coefficient of the pattern 3D printed with 
different resins (Fig. 11e) revealed that by adjusting the pattern’s in-
tensity based on the crosshair map, improvements to similar levels was 

achieved for each resin. This suggests that this model, following a cali-
bration process, is applicable to different ink formulations without the 
necessity to retrain the entire model. 

Fig. 9. Analysis of circle (left) and triangle (right) meshes of different sizes on the printed filter like structure. In each row, the projection pattern and its corre-
sponding 3D printed structure was shown with a different number of layers, the height of each layer is 50 μm. The bottom image shows the filter structure 3D printed 
with non-optimized and optimized patterns. 
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3.6. Discussion 

This work introduces an innovative method for data collection and 
processing to train an ML model based on U-Net, thereby enhancing the 
precision of vat photopolymerization in 3D printing. By utilizing a 
regularized chessboard pattern and an automated calibration strategy, 
we have significantly reduced the model training time by a factor of five. 
The effectiveness of this method is demonstrated through the reduction 
of 3D printing feature sizes and the increased throughput in printing 
complex structures, such as filters and microfluidic channels, without 
the need for hardware modifications. The model’s adaptability across 
different materials is validated through simple calibration. 

Comparing with simulation-based strategies, we see that the ML 
approach is able to achieve similar levels of fidelity [6]. Clearly there are 
advantages and disadvantages of each approach. A simulation can 
capture the essential physics of a process, and often be easily modified to 
accommodate changes, but need to be operated as an inverse method to 
identify optimal conditions. ML methods, however, front load this 
analysis and can swiftly analyze large datasets, identify patterns to 
optimize DLP printing, accelerate iteration speed, and potentially reduce 
the number of required experimental trials. Although physical simula-
tion methods offer more precise optimization results by simulating 
material behavior and light-material interactions, they necessitate 
detailed analysis of the simulated printing process, which can be 

Fig. 10. Printing assessment through fabricating microfluidic channels: (a) the design of channel pattern; (b) 3D printed channel before model optimization and (c) 
fluorescent ink injected showed blockage of channel in the printed structure; (d) 3D printed channel after model optimization and (e) fluorescent ink was injected 
showing the channels were succeed; (f), (g) Appearance of the device before and after optimization; (h) the deviation of the 3D printed channel width from the 
theoretical width. 
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extremely time-consuming [6]. Moreover, ML models can adapt to 
different materials and environmental conditions through calibration, 
providing versatility in optimizing printing precision for various sce-
narios. In contrast, physical simulations require complex computational 
resources and extensive computational simulations, limiting their real- 
time applicability in optimizing DLP printing processes. 

However, this strategy still faces limitations that as the training data 
are limited in 2D, it does show some limitations when dealing with very 
small or sharp structures or when the print contains multiple layers. We 
speculate the expanding the dataset to include a more diverse set of 
materials (e.g., hydrogels) and shapes (e.g., training on non-chessboard 
pattern) could improve our approach still further. 

4. Conclusion 

In conclusion, our approach of improving the design of projection 
patterns, enhances the accuracy and efficiency of vat photo-
polymerization in 3D printing. Owning to the use of ML, once this model 
is trained, it could be easily shared and used by many users without the 
need of significant computing resources. Although, further refining of 
this process can help this strategy achieving better performance, it still 
paves the way for advanced possibilities in AM, including broader ma-
terial adaptability and optimization of automated production processes, 
thereby enabling the production of higher-performance parts for more 
complex applications. 
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