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Abstract 

N6-methyladenosine (m6A) modification has been demonstrated to exhibit a crucial prognostic 

effect on colorectal cancer. Nonetheless, potential mechanism of m6A in survival rate and 

immunotherapeutic response remains unknown. This study aimed to investigate the genes 

associated with m6A regulators and to develop a risk score for predicting the overall survival 

(OS) of CRC patients. RNA-seq transcriptomic profiling data of COAD/READ samples and 

mutation data were obtained from The Cancer Genome Atlas (TCGA). Multivariate Cox 

regression analysis was conducted to identify the m6A-related gene expression signatures 

associated with CRC survival. An m6A-related prognostic risk score was developed in TCGA 

dataset and its predictive performance of CRC survival was further validated in Gene 

Expression Omnibus (GEO) datasets. It was shown that a risk score comprising 18 m6A-related 

mRNAs in combination with clinical characteristics yielded C-statistics of 0.85 (95%CI: 0.79-

0.91), 0.84 (95%CI: 0.79-0.90) and 0.80 (95%CI: 0.71-0.88) for the prediction of the 1-, 3-, 5-

year OS of CRC in TCGA cohort. We further used this risk score as classifier to investigate the 

molecular characteristics, immune microenvironment, and likelihood of response to 

immunotherapy between the low- and high-risk groups. The mutations of oncogenes occurred 

more frequently in the high-risk group and the composition of immune cells in tumour 

microenvironment (TME) was significantly distinct between the low- and high-risk groups. The 

low-risk group had a lower microsatellite instability (MSI) score, T-cell exclusion score and 

dysfunction score, implying that low-risk patients may have a better immunotherapy response 

than high-risk patients. In summary, a prognostic risk score derived from m6A-related gene 

expression signatures could serve as a potential prognostic predictor for CRC survival and 

indicator for predicting immunotherapy response in CRC patients. 

 

  



Introduction 

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer 

mortality worldwide.1 Although the survival time of CRC patients has been significantly 

extended by clinical treatment, the 5-year OS of CRC patients is still not ideal, with a rate of 

approximate xx-68%. Presently, emerging evidence has shown that the discovery and 

application of molecular biomarkers may provide important clinical implications on the 

prognosis and treatment of CRC patients.2  

N6-methyladenosine (m6A) is one of the most prominent and abundant forms of internal RNA 

modification affecting RNA stability and translational efficiency.3, 4 This modification is a 

dynamic reversible process in mammalian cells regulated by methyltransferases, demethylases, 

and binding proteins, which are also known as “writers”, “erasers”, and “readers”.5 In-depth 

understanding of these regulators would help reveal the role and mechanism of m6A 

modification in post-transcriptional regulation. To date, accumulating evidence demonstrated 

that dysregulated m6A methylation modification is correlated with disorders of multiple 

biological processes including dysregulate cell death and proliferation, tumour malignant 

progression, and immunomodulatory abnormality,6 thus could be closely associated with a 

variety of human diseases, in particular cancer.7 For instance, a recent study reported that 

METTL3, one of m6A regulators, directly induced m6A-GLUT1-mTORC1 axis to promote 

CRC development.8 Additionally, it is shown that the dysregulated expression of YTHDF2 can 

restrain cell proliferation by reducing the mRNA stability of EGFR in liver cancer.9 However, 

the specific role of m6A regulators in the dysregulation of mRNAs, and how m6A modifications 

contribute to CRC prognosis remains unclear.  

The tumour microenvironment (TME), which is where the tumour is located and which is 

composed of various cancer cells, stromal cells, and distinct recruited cells (infiltrating immune 

cells, bone marrow-derived cells), plays a crucial role in tumour progression and affects the 

clinical benefit from novel strategies of immunological checkpoint blockade (ICB).10, 11 

Emerging studies have made efforts to understand the heterogeneity and complexity of the TME 

to improve immunotherapy strategies by comprehensive analysis of m6A regulators.12 



Predicting the immunotherapy response of CRC patients based on multiple m6A-related 

biomarkers has the potential to develop a personalised treatment strategy and therefore to 

increase the success of ICB.13-15  

In this study, we sought to elucidate the m6A related mRNAs signatures for predicting the 

overall survival (OS) and immune responses of CRC patients using transcriptome data from 

The Cancer Genome Atlas (TCGA)16 and Gene Expression Omnibus (GEO)17, 18 datasets. We 

focused on the m6A-related genes and developed a multivariate Cox prediction model for the 

OS of CRC patients and examined its prognostic ability in immunotherapy response. We 

additionally explored the candidate drugs targeting these m6A-related gene signatures using the 

publicly available Genomics of Drug Sensitivity in Cancer (GDSC) database for predicting 

drug sensitivity19. Findings from this study are helpful to predict the prognosis of CRC and 

develop personalized CRC treatment strategies. 

Materials and Methods 

Study population and datasets 

A study sample of 644 CRC patients from the TCGA was used as a training dataset. RNA-seq 

[Fragments Per Kilobase of transcript per Million mapped reads (FPKM normalized)] were 

acquired from Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/) using the 

R package “TCGAbiolinks”, which was specifically developed for integrative analysis with 

Genetic Data Commons (GDC) data20. Then FPKM values were transformed into transcripts 

per kilobase million (TPM) values. The corresponding clinicopathological information and 

somatic mutation data of CRC patients were obtained from the cBioPortal database 

(https://portal.gdc.cancer.gov/). Two study samples (GSE39582, N=566; GSE17536, N=177) 

from the GEO database were used as validation datasets, and their normalized microarray gene 

expression data and clinicopathological data were obtained online 

(https://www.ncbi.nlm.nih.gov/geo/). Those RNA probe sets were re-annotated using the 

Ensemble database (http://www.ensembl.org). CRC patients with missing OS values or OS < 

30 days were excluded in order to reduce statistical bias in this analysis.  

Identification of m6A-related prognostic genes 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ensembl.org/


The expression matrices of 21 m6A regulators were retrieved from the TCGA, including the 

expression data of eight writers (METTL3, METTL14, METTL16, RBMX2, RBM15B, WTAP, 

KIAA1429, and ZC3H13), two erasers (FTO and ALKBH5), and eleven readers (YTHDC1, 

YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, EMR1, LRPPRC, HNRNPA2B1, HNRNPC, 

and ELAVL1). Based on the RNA-seq data, Pearson’s correlation analysis was firstly 

implemented to identify m6A-related genes, using the criteria of |Pearson R| >0.3 and p <0.001. 

Univariable and multivariable Cox regression models (false discovery rate, FDR<0.05) and the 

least absolute shrinkage and selection operator (LASSO) Cox regression (with the penalty 

parameter estimated by 5-fold cross-validation) were conducted subsequently to select the 

m6A-related prognostic genes that were distinctly related to the OS of CRC patients.  

Development and validation of the genetic risk signatures 

A weighted prognostic risk score of m6A-related gene expression was constructed based on the 

following formula: Risk score = ∑ Coef (Genei) × Expr(Genei)𝑛
𝑖=1 , where Coef (Genei) was 

the coefficient of genes correlated with CRC survival, and Expr (Genei) was the expression of 

genes. The prognostic value of the risk score was evaluated by Kaplan-Meier survival curves 

with log-rank tests in both TCGA and GEO study samples. Multivariate Cox regression analysis 

was performed to evaluate the prediction performance of the m6A-related gene signatures 

prognostic risk score. Patients with CRC were further stratified into low- and high-risk groups 

based on the median value of the prognostic risk score of m6A-related genes.  

Analysis of the molecular characteristics in the low- and high-risk groups  

To explore the biological function and alternative pathways of these m6A-related gene 

signatures, we performed a co-expression and pathway enrichment analysis based on the TCGA 

database, using the Kyoto Encyclopaedia of Genes and Genomes Pathway (KEGG pathway) as 

reference21. Linear regression was performed to detect co-expressed genes (FDR<0.05). In the 

gene mutation analysis, information on genetic alterations was obtained from the cBioPortal 

database. The quantity and quality of gene mutations were analysed in low- and high-risk 

groups by using the Maftools package in R.  



Exploration of immunotherapeutic response between low- and high-risk groups 

To depict immune characteristics of CRC patients, the entire expression data were imported 

into CIBERSORT (https://cibersort.stanford.edu/) and a deconvolution algorithm using support 

vector regression was used and iterated 1,000 times to determine the relative proportions of 22 

immune cell types in tumours. The relative proportions of immune cell types and 

clinicopathologic factors were compared between the low- and high-risk groups. The tumour 

Immune Dysfunction and Exclusion (TIDE) score was calculated online 

(http://tide.dfci.harvard.edu/) to predict the likelihood of immunotherapeutic response between 

the low- and high-risk groups. 

Prediction of potential compounds targeting therapeutic sensitivity in CRC patients 

To obtain potential compounds with differential therapeutic sensitivity, we investigated the 

predictive capacity of the low- and high-risk groups in responding immunotherapy. The 50% 

inhibiting concentration half-maximal inhibitory concentration (IC50) value of 138 anti-cancer 

drugs was inferred from the GDSC website based on the COAD/READ dataset of the TCGA 

project. The “pRRophetic” algorithm22 was used to predict the IC50 of compounds in the low- 

and high-risk groups separately.  

Statistical analysis 

An independent t-test was performed to compare continuous variables between two groups. 

Categorical data were tested using the 2 test. Pearson correlation analysis was implemented to 

identify m6A-related genes (with the | Pearson r | >0.05 and p<0.001). Univariate survival 

analysis was performed by K-M survival analysis with the log-rank test to calculate the 

significance of differences in the OS. Multivariate survival analysis was performed using the 

Cox regression model to estimate the hazard ratio (HR). The time-dependent area under the 

receiver operating characteristic curve (AUC) was estimated to evaluate the predictive power 

of the risk score and TNM stage to the OS. Stratification analysis was performed to investigate 

the survival difference in subgroups, including age, sex, American Joint Committee on Cancer 

(AJCC) TNM stage, T stage, N stage, M stage, Radiation therapy history. A nomogram of the 

https://cibersort.stanford.edu/
http://tide.dfci.harvard.edu/


risk score and other predictors was set up accordingly for the prediction of the 1-, 3-, 5- year 

OS. Unless otherwise stated, the P values were two-sided and P<0.05 was considered as 

statistically significant. 

Results 

Landscape of genetic variation of m6A regulators in CRC patients 

A total of 21 m6A regulators, namely 8 “writers”, 2 “erasers”, and 11 “readers”, were included 

in this study. We firstly assessed the prevalence of somatic mutations and copy number 

variations (CNV) of these 21 m6A regulators. Among the 551 samples, 169 (30.67%) had 

mutations in any of the m6A modification regulators (Fig. 1A). It was found that ZC3H13 

exhibited the highest mutation frequency (23%) followed by KIAA1429 (18%) and YTHDC2 

(15%), while demethylases ALKBH5 (2%) and WTAP (3%) showed low number of mutations 

in CRC samples. We then examined the somatic copy number alterations of these m6A 

regulators and found that METTL14 (34%), METTL16 (56%), ALKBH5 (58%) and YTHDF2 

(38%) had a widespread frequency of CNV deletions (Fig. 1B and Fig. 1C). To ascertain 

whether the above genetic variations influenced the expression of m6A regulators in CRC 

patients, we investigated the mRNA alterations of the m6A regulators between paired normal 

and tumour samples of CRC patients. This showed that alterations of CNV were prominent 

factors resulting in perturbations on the m6A regulators expression. Compared to the normal 

colon tissues, regulators with CNV gain demonstrated markedly higher expression in CRC 

tissues (e.g., YTHDF1 and KIAA1429) (Fig. 1B and Supplementary Fig. S1). And vice versa, 

some regulators showed downregulated mRNA expression but with high frequency of CNV 

loss (e.g., ALKBH5). This analysis presented the high heterogeneity of genetic and expressional 

alteration landscape of m6A regulators between normal and tumour samples, demonstrating 

that the expression imbalance of m6A regulators may be important in the onset and progression 

of CRC. 

Identification of m6A-related genes in patients with CRC 

A total of 551 COAD/READ patients from the TCGA database were included in our study to 



calculate the prognostic risk score of m6A-related genes. The detailed workflow for risk model 

construction and subsequent analyses is shown in Fig. 2. We abstracted the matrix expression 

of 21 m6A regulators and 19,982 mRNAs from the TCGA database. Correlations between these 

21 m6A regulators and 19,982 mRNAs were examined and we identified 4274 mRNAs that 

were significantly correlated with m6A regulators base on the criteria of |Pearson R|>0.5 and 

p<0.001. To identify m6A-related genes that correlated with the OS of CRC patients, we 

screened from 4274 m6A-associated mRNAs in the TCGA training set using univariate Cox 

regression analysis. At FDR<0.05, fifty-seven m6A-related mRNAs correlated significantly 

with OS (Supplementary Table S1). 

Construction of the prognostic risk score based on m6A-related gene expression 

signatures 

To avoid overfitting, the LASSO-Cox regression was applied to optimise the selection of gene 

signatures in relation to the OS. Consequently, 18 m6A-related mRNAs (PMM2, ERI1, NEK9, 

USP53, CNOT3, CDK5RAP2, ING5, HMGXB4, SH3D19, UBE2H, CLK1, SFPQ, UBP1, 

PDCD6IP, ZNF248, SCL25A53, CLCC1 and GPR125) were finally selected to construct a 

m6A-related gene signatures prognostic risk score for CRC survival (Supplementary Fig. S2A 

and S2B). The correlation between m6A regulators and m6A-related gene signatures in the 

TCGA dataset is showed in Supplementary Fig. S3. CRC patients were separated into high- 

and low-risk groups based on the median value of the prognostic risk score constructed by the 

m6A-related gene expression signatures. The distribution of risk scores between the low- and 

high-risk groups is depicted in Fig. 3A, and the survival status and survival time of CRC 

patients in the low- and high-risk groups are shown in Fig. 3B. The expression levels of the 18 

m6A-related genes in the low- and high-risk groups are shown in Fig. 3C. Kaplan–Meier 

survival curves showed that CRC patients with higher risk scores had worse clinical outcomes 

(lower OS rates and a shorter OS time, HR=1.30, 95%CI: 1.21-1.41; P<0.0001, log-rank test) 

(Fig. 3D). PCA analysis was further conducted to test the difference between the low- and high-

risk groups based on the entire gene expression profiles, 21 m6A regulators and the expression 

profile of the 18 m6A-related genes (Supplementary Fig. S4A-4C). As showed 

Supplementary Fig. S4A-4B, the gene expression profiles of the low- and high-risk groups 



were differently distributed (Supplementary Fig. S4C).  

Validation of the prognostic risk score based on m6A-related gene expression signatures 

Detailed clinicopathologic characteristics of CRC patients in TCGA and GEO datasets are 

shown in Supplementary Table S2 and Supplementary Table S3. The expression of 18 m6A-

related genes was closely correlated with the OS of CRC patients as determined by K-M 

analysis (Supplementary Fig. S5). Supplementary Fig. S6 showed the m6A-related gene 

signatures affecting the OS of patients with CRC. According to the subgroups classified by sex, 

age, AJCC TNM stage or tumour stage, the OS of the low-risk group continued to be superior 

to that of the high-risk group (Supplementary Fig. S7A-7H). To validate the prognostic 

capability, we calculated the risk scores for CRC patients in two GEO (GSE39582, GSE17536) 

datasets using the same formula. As showed in Fig. 4A-4H, patients stratified into the high-risk 

group had a significantly worse prognosis than those in the low-risk group which was consistent 

with the results of TCGA dataset (P=1.38e-11, log-rank test).  

Molecular characteristics of the low- and high-risk groups stratified by the prognostic 

risk score 

To demonstrate the potential mechanisms and pathways involved in the molecular 

heterogeneity leading to the different outcomes between the low- and high-risk groups, we 

performed functional enrichment analysis with annotation of KEGG gene set. We found that 

m6A-related gene expression signatures were differentially enriched (FDR<0.05) in the 

pathways related to cancer, immune response, and neural signaling between the two groups 

(Supplementary Table S4), and pathways that more than half of the gene signatures enriched 

in were summarized in Supplementary Fig. S8. When examining the somatic mutations, we 

found that the top 20 cancer driver genes mutated more frequently in the high-risk group than 

in the low-risk group (Fig.5A-5B), and significant co-occurrences were also observed among 

mutations of these genes (as shown in Fig. 5C).  

Estimation of the tumour immune microenvironment and cancer immunotherapy 

response 



To analyse the composition of immune cells in different risk groups, we used the Wilcoxon test 

to compare the distribution of immune cells. As shown in Fig. 6A, we found that CD8 T cells, 

Tregs regulatory T cells, resting natural killer (NK) cells, and M0 macrophages were more 

abundant in the high-risk group, while plasma cells, resting memory CD4 T cells, activated 

memory CD4 T cells and M2 macrophages were more abundant in the low-risk group. We next 

investigated the correlations between the m6A-related signature model and immunotherapeutic 

biomarkers. Higher TIDE prediction score represented a higher potential for immune evasion, 

which suggested that the patients were less likely to benefit from Immune checkpoint inhibitor 

(ICI) therapy. In our results, the low-risk group had a lower TIDE score than the high-risk group, 

implying that low-risk patients may have a better immunotherapy response than high-risk 

patients (Fig. 6B-6E). Also, we found that the high-risk group had a higher microsatellite 

instability (MSI) score, T-cell exclusion score and dysfunction score. To find the potency of 

m6A-related prognostic score as a biomarker for predicting the response of CRC patients to 

drugs, we used “pRRophetic” algorithm to infer the therapeutic response based on the IC50 

value of the 138 anti-cancer drugs in TCGA-COAD/READ patients. We found 50 

chemotherapeutic drugs displaying differential IC50 between these two groups 

(Supplementary Fig. S9). 

Construction of nomogram based on prognostic risk score and clinical characteristics 

We next investigated the distribution of the risk score of patients with CRC using different 

conventional clinical information (including sex, T stage, N stage, M stage and AJCC TNM 

stage), and found that CRC patients with higher T, N or TNM stage had a higher risk score (Fig. 

7A). Univariate Cox analysis showed that age, radiation history, T stage, N stage and the 

prognostic risk score were significantly associated with the prognosis of CRC (Fig. 7B). 

Multivariate Cox analysis confirmed that the prognostic risk score based on m6A-related gene 

expression signatures was an independent predictor of CRC survival (Fig. 7C). Multivariate 

Cox prediction models combing prognostic risk score and clinical characteristics yielded C-

statistics of 0.854 (95%CI: 0.795-0.913), 0.844 (95%CI: 0.790-0.898) and 0.796 (95%CI: 

0.708-0.883) for the prediction of the 1-, 3-, 5-year OS (Fig. 8A-8C), which displayed superior 

predictive performance over the model that only included clinical characteristics with C-



statistics of 0.808 (95%CI: 0.740-0.875), 0.793 (95%CI: 0.730-0.856) and 0.755 (95%CI: 

0.665-0.845). Calibration plots showed that the observed vs. predicted rates of 1-, 3-, 5-year 

OS had good concordance (Fig. 8D-8F). Accordingly, a prognostic nomogram was established 

based on the risk score and clinical characteristics for the prediction of OS in CRC patients as 

shown in Fig. 8G. 

Discussion 

Here, we developed a prognostic risk score based on m6A-related gene expression signatures 

and performed external validation to assess its prediction accuracy. Our study indicated that the 

m6A-based prognostic risk score was an independent predictor for CRC survival and had 

improved the prediction accuracy of CRC survival when combined with clinical characteristics. 

When stratified by this risk score, the high-risk group was associated with a worse survival rate, 

lower immunogenicity, and greater number of somatic mutations than patients in the low-risk 

group. Moreover, the low-risk group had a lower TIDE score than the high-risk group for 

predicting immunotherapy response, implying that low-risk patients could benefit more from 

immunotherapy than high-risk patients. 

Studies have shown that m6A modification of mRNAs can affect the occurrence and 

development of tumours.23 Functional enrichment analyses in this study indicated that 

CDK5R4P2, CLK1, CNOT3, GPR125, ING5, SFPQ and UBE2H are mainly involved in the 

neural, destabilization and metabolic processes of mRNA signatures, and influence the growth, 

differentiation and communications of multiple colon cell types. Our analysis suggested that 

metabolism signaling pathways (including key mRNAs of CDK5RAP2, CNOT3, CLK1 and 

SFPQ genes) may contribute to tumorigenesis and cancer development. Interestingly, GPR125 

and SFPQ were enriched in a neural signaling pathway in relation to Spinocerebellar ataxia. 

Additionally, CLK1 was reported as a novel inhibitor of CLK kinases that impairs the growth 

of CRC cell lines and organoids, inhibited anchorage-independent colony formation, cell 

migration, and promotes cytotoxicity.24 UBE2H was identified as a m6A-related hub gene 

closely related to the clinicopathology and prognosis of CRC using a prognostic signature 

model.25 In concordance with our findings, Cejas et al also found that CNOT3 overexpression 



in colon tissues was associated with worse prognosis outcomes of CRC.26 

Our study firstly developed a prognostic risk score based on 18 m6A-related gene expression 

signatures that could be used as an index to predict the OS of CRC patients, and further 

validated its predictive performance in two independent external datasets. Time-dependent 

AUC showed that the m6A-based prognostic risk score had a good accuracy in predicting the 

OS of CRC patients in both the TCGA and the validation datasets. The combination of the 

prognostic risk score with TNM stage and age displayed superior predictive performance over 

the model that only included clinical characteristics. The stratified analysis also confirmed that 

the risk score could predict CRC survival with good performance in different clinical subgroups 

(age, T stage, AJCC TNM stage). Taken together, this m6A-based prognostic risk score could 

be used as an independent predictor for CRC survival and the application of risk score in 

combination with clinical characteristics could improve the prediction accuracy of CRC 

survival.  

Using this m6A-related prognostic risk score as a classifier, CRC patients were stratified into 

low- and high-risk groups to gain further biological insight into the gene mutations and 

immunologic nature of CRC patients in different risk groups. We found that m6A-related gene 

expression signatures were differentially enriched in the pathways related to cancer, immune 

response, and neural signaling between the two groups. When examining the somatic mutations, 

we found that the top 20 cancer driver genes mutated more frequently in the high-risk group 

than in the low-risk group, and significant co-occurrences were also observed among mutations 

of these genes. By examining the immunologic nature of CRC patients in different risk groups, 

we found high-risk group generally had higher monocytes and macrophages M1 infiltration and 

fractions of T cells CD8, and lower memory resting CD4 T cells than low-risk patients. It has 

been reported that CRC patients enriched with M1 phenotype and the high islet density of M1 

macrophages would have poor prognosis, which are consistent with the findings from our study. 

This indicates that the m6A-related gene expression signatures may modulate the TME 

phenotypes to influence the survival of CRC patients.  

Emerging pieces of evidence showed that different TME phenotypes might have different 



degrees of benefit from immunotherapeutic treatment.27 A Tumour Immune Dysfunction and 

Exclusion (TIDE) score has been increasingly used as an index for predicting 

immunotherapeutic response.28 Using the TIDE algorithm, we estimated the immune response 

and found that patients in the low-risk group have a superior response to immunotherapy. 

Chemotherapy results indicated that the high-risk patients with CRC were more sensitive to 24 

chemotherapies than low-risk patients. These results suggested that the poorer prognosis for 

high-risk patients could be due to higher immunosuppression in the TME, and that TME may 

influence the response of chemotherapy and immunotherapy. Based on these findings, this 

m6A-based risk score might also be used as an indicator for predicting immunotherapy 

response among CRC patients.  

Our study also provides insight for future studies on the process and mechanism of m6A 

modification of gene expression signatures. However, we are also aware of several limitations 

in this study. Although the m6A-related gene signatures prognostic risk score showed superior 

performance on the prediction of CRC survival and the response to immunotherapy, it should 

be prospectively validated in real clinical settings and the clinicopathological factors should 

also be considered. Moreover, both the TIDE and MSI scores focused on the function and status 

of T cells, which could not fully reflect the complexity of the TME involved in the 

immunotherapeutic response. Thus, future observational studies should be performed to further 

validate the application of this prognostic risk score in the prediction of CRC survival and to 

understand how these m6A-related gene expression signatures modulate the TEM and influence 

the response to immunotherapy.  

In conclusion, we developed a prognostic risk score based on the expression signature of 18 

genes associated with m6A modification to predict the OS of CRC patients and their response 

to immunotherapy. This work highlights the clinical implications of this risk score in 

distinguishing immune and molecular characteristics and identifying response of target 

treatments. The derived m6A-related risk score showed the potential to be used as a prognostic 

and therapeutic indicator for the prediction of CRC prognosis and the development of 

individualized CRC treatment strategy. 
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Figure legends 

Figure 1. Landscape of genetic of m6A regulators in colorectal cancer. (A) The mutation 

frequency of 21 m6A regulators in 169 patients with CRC from TCGA cohort. (B) Bar graphs 

showing the frequency of CNV gain (green), loss (blue) and non CNV (yellow) of m6A 

regulators in TCGA-COAD/READ cohort. (C) Principal component analysis for the expression 

profiles of 21 m6A regulators to distinguish tumors from normal samples in TCGA cohort. (D) 

Expression of 21 m6A regulators between normal tissues and CRC tissues. 

Figure 2. Flow chart of this study. 

Figure 3. Prognostic value of the risk patterns of the 18 m6A-related gene signatures in 

the TCGA training dataset. (A) Distribution of m6A-related gene expression model-based 

risk score. (B) Different patterns of survival status and survival time between the high- and low-

risk subgroups. (C) Clustering analysis heatmap shows the expression standards of the 18 

prognostic genes for each patient. (D) Kaplan-Meier survival curves of the OS of patients in 

the high- and low-risk subgroups. 

Figure 4. Prognostic value of the risk model of the 18 m6A-related gene signatures in 

GSE39582 and GSE17536 dataset. (A) Distribution of m6A-related gene expression model-

based risk score for the GSE39582. (B) Different patterns of survival status and survival time 

between the high- and low-risk subgroups for the GSE39582. (C) Clustering analysis heatmap 

shows the expression standards of the 18 prognostic genes for each patient for the GSE39582. 

(D) Kaplan-Meier survival curves of the OS of patients in the high- and low-risk subgroups for 

the GSE39582. (E) Distribution of m6A-related gene expression model-based risk score for the 

GSE17536. (F) Different patterns of survival status and survival time between the high- and 

low-risk subgroups for the GSE17536. (G) Clustering analysis heatmap shows the expression 

standards of the 18 prognostic genes for each patient for the GSE17536. (H) Kaplan-Meier 

survival curves of the OS of patients in the high- and low-risk subgroups for the GSE17536. 

Figure 5. Molecular characteristics of different risk subgroups. (A and B) Waterfall plot 

displays tumour somatic mutation information of the genes with high mutation frequencies in 



the high-risk subgroup (A) and low-risk subgroup (B). Mutated genes (rows, top 20) are ordered 

by mutation rate; samples (columns) are arranged to emphasize mutual exclusivity among 

mutations. The right shows the mutation percentage, and the top shows the overall number of 

mutations. The color coding indicates the mutation type. (C) The co-expression patterns of top 

20 mutated genes in CRC patients. 

Figure 6. The landscape and estimation of the tumor immune microenvironment using 

the m6A-related gene signatures model. (A) The proportions of TME cells in different risk 

subgroups. Significant statistical differences between the two subgroups were assessed using 

the Wilcoxon test, the asterisks represented the statistical p value (blank, not significant; *P < 

0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). (B-E) TIDE (B), MSI (C), and T-cell 

exclusion (D) and dysfunction (E) score in the high- and low-risk patients. The scores between 

the two risk subgroups were compared through the Wilcoxon test (ns, not significant; ***P < 

0.001). 

Figure 7. Correlation between the 18-gene expression signatures and clinical 

characteristics. (A) Difference analysis of the distribution of risk scores in different T, N, M, 

AJCC TNM stages, gender, and radiation history. Statistical difference of two groups was 

compared by the Wilcoxon test and three or more groups were compared by the Kruskal–Wallis 

test (*P < 0.05; **P < 0.01; ***P < 0.001; ns not significant). (B and C) Univariate (B) and 

multivariate (C) Cox regression analyses of correlations between the 18-gene expression 

signatures and clinical characteristics with OS, and revealed that the risk score based on the 

m6A-related gene expression signatures was an independent prognostic predictor in the TCGA 

dataset.  

Figure 8. Assessment of the prognostic risk model of the m6A-related gene expression 

signatures and clinical features in CRC. (A-C) Time-dependent receiver operating 

characteristic (ROC) curves for the nomogram, risk score, and clinical characteristics in the 

TCGA dataset on predicting 1- (A), 3- (B), and 5-year (C) OS. (D-F) The calibration plot of 

the nomogram predicts the probability of the 1- (D), 3- (E), and 5- (F) year OS. (G) Nomogram 

for predicting the 1-, 3-, and 5-year OS of patients with CRC.  
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