14 research outputs found

    SynthÚse et mise en forme de matériaux microporeux fonctionnalisés pour la transformation catalytique des monosaccharides

    No full text
    Biomass valorization is a process of converting different types of plants and residual wastes into high-value chemicals and energies carriers. Zeolites and Metal-Organic Frameworks (MOFs) have attracted a great deal of interest as solid catalysts owing to their developed chemical properties as well as large available surface areas. A further functionalization can tune their intrinsic acid-base properties to boost their catalytic performance in a given reaction. Such tailoring mostly implies framework functionalization in MOFs and isomorphous substitution in zeolites. However, both processes are accompanied with several challenges associated with the realization and characterization of such-modified solids. In this regard, a series of framework functionalization was performed on UiO-66 to produce UiO-66-SO3H, UiO-66-COOH, UiO-66-NH2 and UiO-66-OH MOFs. On the other hand, isomorphous substitution in a [Si,Al]-MFI type zeolite was conducted in order to replace Al by Zr atoms to make [Si,Zr]-MFI zeolitic solids. Thus-formed solids were exposed to a detailed characterization on structural, textural and chemical properties and eventually applied as solid catalysts. Thus, UiO-66-SO3H demonstrated superior performance in fructose dehydration to 5-hydroxymethylfurfural due to its pronounced BrĂžnsted acid properties making it the best catalyst with respect to other tested solids. Subsequently, this was followed by upscaling of its small-scale synthesis and shaping by extrusion. At the same time, [Si,Zr]-MFI showed the highest activity in glucose isomerization to fructose as compared to other solids owing to its basic features.La valorisation de la biomasse inclus les processus de conversion de diffĂ©rents types de plantes et de dĂ©chets vĂ©gĂ©taux en produits chimiques et biocarburants Ă  haute valeur ajoutĂ©e. Les zĂ©olithes et une classe rĂ©cente de matĂ©riaux appelĂ©s Metal-Organic Frameworks (MOFs) ont suscitĂ© un grand intĂ©rĂȘt en tant que catalyseurs solides en raison de leurs propriĂ©tĂ©s chimiques dĂ©veloppĂ©es ainsi que de leurs grandes surfaces spĂ©cifiques. Une modification spĂ©cifique peut moduler leurs propriĂ©tĂ©s acido-basiques afin d’amĂ©liorer leurs performances catalytiques dans une rĂ©action donnĂ©e. De telles modifications impliquent notamment une fonctionnalisation du rĂ©seau des MOFs, ou une substitution isomorphe dans la charpente de la zĂ©olithe. Cependant, les deux procĂ©dĂ©s sont accompagnĂ©s de plusieurs difficultĂ©s associĂ©es Ă  la rĂ©alisation et Ă  la caractĂ©risation des solides ainsi modifiĂ©s. À cet Ă©gard, diffĂ©rentes fonctionnalisations chimiques ont Ă©tĂ© rĂ©alisĂ©es sur la phase UiO-66 pour produire des matĂ©riaux UiO-66-SO3H, UiO-66-COOH, UiO-66-NH2 et UiO-66-OH. D'autre part, une substitution isomorphe dans une zĂ©olithe de type [Si,Al]-MFI a Ă©tĂ© rĂ©alisĂ©e afin de remplacer les atomes Al par des atomes Zr pour fabriquer des solides zĂ©olithiques de type [Si,Zr]-MFI. Les solides ainsi formĂ©s ont Ă©tĂ© caractĂ©risĂ©s pour obtenir une description dĂ©taillĂ©e des propriĂ©tĂ©s structurales, texturales et chimiques, et finalement ont Ă©tĂ© appliquĂ©s en tant que catalyseurs. Parmi les solides testĂ©s, l’UiO-66-SO3H a dĂ©montrĂ© des performances supĂ©rieures pour la dĂ©shydratation du fructose en 5-hydroxymĂ©thylfurfural, en raison de ses propriĂ©tĂ©s acides BrĂžnsted prononcĂ©es. À cet Ă©gard, une synthĂšse Ă  grande Ă©chelle de l’UiO-66-SO3H a Ă©tĂ© rĂ©alisĂ©e suivi de sa mise en forme par le procĂ©dĂ© d’extrusion. D’autre part, [Si,Zr]-MFI a montrĂ© l'activitĂ© la plus Ă©levĂ©e pour l’isomĂ©risation du glucose en fructose par rapport aux autres solides testĂ©s en raison de ses propriĂ©tĂ©s basiques

    SynthÚse et mise en forme de matériaux microporeux fonctionnalisés pour la transformation catalytique des monosaccharides

    No full text
    La valorisation de la biomasse inclus les processus de conversion de diffĂ©rents types de plantes et de dĂ©chets vĂ©gĂ©taux en produits chimiques et biocarburants Ă  haute valeur ajoutĂ©e. Les zĂ©olithes et une classe rĂ©cente de matĂ©riaux appelĂ©s Metal-Organic Frameworks (MOFs) ont suscitĂ© un grand intĂ©rĂȘt en tant que catalyseurs solides en raison de leurs propriĂ©tĂ©s chimiques dĂ©veloppĂ©es ainsi que de leurs grandes surfaces spĂ©cifiques. Une modification spĂ©cifique peut moduler leurs propriĂ©tĂ©s acido-basiques afin d’amĂ©liorer leurs performances catalytiques dans une rĂ©action donnĂ©e. De telles modifications impliquent notamment une fonctionnalisation du rĂ©seau des MOFs, ou une substitution isomorphe dans la charpente de la zĂ©olithe. Cependant, les deux procĂ©dĂ©s sont accompagnĂ©s de plusieurs difficultĂ©s associĂ©es Ă  la rĂ©alisation et Ă  la caractĂ©risation des solides ainsi modifiĂ©s. À cet Ă©gard, diffĂ©rentes fonctionnalisations chimiques ont Ă©tĂ© rĂ©alisĂ©es sur la phase UiO-66 pour produire des matĂ©riaux UiO-66-SO3H, UiO-66-COOH, UiO-66-NH2 et UiO-66-OH. D'autre part, une substitution isomorphe dans une zĂ©olithe de type [Si,Al]-MFI a Ă©tĂ© rĂ©alisĂ©e afin de remplacer les atomes Al par des atomes Zr pour fabriquer des solides zĂ©olithiques de type [Si,Zr]-MFI. Les solides ainsi formĂ©s ont Ă©tĂ© caractĂ©risĂ©s pour obtenir une description dĂ©taillĂ©e des propriĂ©tĂ©s structurales, texturales et chimiques, et finalement ont Ă©tĂ© appliquĂ©s en tant que catalyseurs. Parmi les solides testĂ©s, l’UiO-66-SO3H a dĂ©montrĂ© des performances supĂ©rieures pour la dĂ©shydratation du fructose en 5-hydroxymĂ©thylfurfural, en raison de ses propriĂ©tĂ©s acides BrĂžnsted prononcĂ©es. À cet Ă©gard, une synthĂšse Ă  grande Ă©chelle de l’UiO-66-SO3H a Ă©tĂ© rĂ©alisĂ©e suivi de sa mise en forme par le procĂ©dĂ© d’extrusion. D’autre part, [Si,Zr]-MFI a montrĂ© l'activitĂ© la plus Ă©levĂ©e pour l’isomĂ©risation du glucose en fructose par rapport aux autres solides testĂ©s en raison de ses propriĂ©tĂ©s basiques.Biomass valorization is a process of converting different types of plants and residual wastes into high-value chemicals and energies carriers. Zeolites and Metal-Organic Frameworks (MOFs) have attracted a great deal of interest as solid catalysts owing to their developed chemical properties as well as large available surface areas. A further functionalization can tune their intrinsic acid-base properties to boost their catalytic performance in a given reaction. Such tailoring mostly implies framework functionalization in MOFs and isomorphous substitution in zeolites. However, both processes are accompanied with several challenges associated with the realization and characterization of such-modified solids. In this regard, a series of framework functionalization was performed on UiO-66 to produce UiO-66-SO3H, UiO-66-COOH, UiO-66-NH2 and UiO-66-OH MOFs. On the other hand, isomorphous substitution in a [Si,Al]-MFI type zeolite was conducted in order to replace Al by Zr atoms to make [Si,Zr]-MFI zeolitic solids. Thus-formed solids were exposed to a detailed characterization on structural, textural and chemical properties and eventually applied as solid catalysts. Thus, UiO-66-SO3H demonstrated superior performance in fructose dehydration to 5-hydroxymethylfurfural due to its pronounced BrĂžnsted acid properties making it the best catalyst with respect to other tested solids. Subsequently, this was followed by upscaling of its small-scale synthesis and shaping by extrusion. At the same time, [Si,Zr]-MFI showed the highest activity in glucose isomerization to fructose as compared to other solids owing to its basic features

    From Metal-Organic Framework Powders to Shaped Solids: Recent Developments and Challenges

    No full text
    International audienceMetal-organic frameworks represent a class of porous materials which developedconsiderably over the past few years. Their highly porous structure makes themoutperforming conventional adsorbents in hot topics such as dihydrogen and methanestorage, and carbon dioxide capture. Their consequent modularity, based on the assembly oforganic linkers and metal ions or clusters, also brings novel perspectives in catalysis, sensingand drug delivery just to name a few. However, one of the main bottlenecks to their broaderuse remains their shaping. Especially, shaped materials should present a long-termmechanical stability as well as preservation of the physical and chemical properties. Thismakes shaping of MOFs a special case as their thermal and chemical stabilities remain adownside as compared to other traditional porous materials such as silicas and zeolitestoday. Therefore, an over-increasing effort has been devoted to the shaping of thesematerials.In this review, the state of the art for the preparation of shaped 3D MOF-based materials ispresented. Emphasis will be given to the final physical and chemical properties of the shapedsolids comparatively to the initial powders, when data are available. In the first part,traditional techniques based on applying a significant force to MOF-based powders will bereviewed. These include pelletization, granulation, extrusion which generally lead to anincrease of the final volumetric gas uptake of the objects. At the same time, advantages anddisadvantages of each technique will be discussed as well as the main outcome on the finalobjects. In the second part, focus will be given on the newly-emerging techniques such as 3Dprinting and spray drying. The former also maximizes the volumetric gas uptake of the finalmaterials and for both techniques the quality of the final objects heavily rely on the workingparameters. Finally, the third part will include the so-called “phase separation” shapingtechniques which are for the most part performed without using special techniques. Thisimplies shaping via physical and chemical phenomena such as sublimation or precipitation.Subsequently, a discussion will be proposed on the performance of these materials foradsorption-based applications. Finally, perspectives and future outlook will be discussed

    Water-Based Synthesis of Zr6-Based Metal–Organic Framework Nanocrystals with Sulfonate Functions: Structural Features and Application to Fructose Dehydration

    No full text
    International audienceA series of zirconium-based metal−organic framework (MOF) nanocrystals (95−211 nm) displaying sulfonate functions (UiO-66-SO3H) was prepared in N,N-dimethylformamide (DMF) - the conventional solvent - and water, and their physicochemical properties were thoroughly investigated. In particular, X-ray diffraction results suggest that upon replacing DMF with water, the resulting MOF crystal structure presents a highly defective structure belonging to the space group Im3̅ instead of typical Fm3̅m. The acid catalysts were applied to the fructose dehydration into 5-hydroxymethylfurfural (5-HMF). Complete conversion of fructose over UiO-66-SO3H prepared in water was reached after only 30 min at 100 °C, in line with its stronger BrĂžnsted acidity. In comparison, its counterpart prepared in DMF showed only 30% fructose conversion. Moreover, the intrinsic catalytic effect at 80 °C was only observed with the water-based UiO66-SO3H. Without reactivation of the catalyst, recycling tests demonstrated the preservation of its structural integrity upon nine consecutive cycles, while a gradual loss of the catalyst activity was attributed to the humin adsorption on the MOFs
    corecore