49 research outputs found

    Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity

    Full text link
    Adaptive immune repertoires are composed by the ensemble of B and T cell receptors (BCR, TCR) within an individual and reflect both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Such high-dimensional datasets enable the molecular quantification of clonal selection of B and T cells across a wide variety of conditions such as infection and disease. Due to costs, time required for the analysis and current practices of academic publishing, small-scale sequencing studies are often not made publicly available, despite having informative potential to elucidate immunological principles and guide future-studies. Here, we performed single-cell sequencing of B and T cells to profile clonal selection across murine models of viral infection and autoimmune disease. Specifically, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following acute and chronic viral infection, CD8+ T cells with binding specificity restricted to two distinct peptides of lymphocytic choriomeningitis virus, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate repertoire features such as clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T cell inflation, and regulation. Together, this dataset provides a resource for experimental and computational immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets

    Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity

    Full text link
    Adaptive immune repertoires are composed by the ensemble of B and T cell receptors (BCR, TCR) within an individual and reflect both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Such high-dimensional datasets enable the molecular quantification of clonal selection of B and T cells across a wide variety of conditions such as infection and disease. Due to costs, time required for the analysis and current practices of academic publishing, small-scale sequencing studies are often not made publicly available, despite having informative potential to elucidate immunological principles and guide future-studies. Here, we performed single-cell sequencing of B and T cells to profile clonal selection across murine models of viral infection and autoimmune disease. Specifically, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following acute and chronic viral infection, CD8+ T cells with binding specificity restricted to two distinct peptides of lymphocytic choriomeningitis virus, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate repertoire features such as clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T cell inflation, and regulation. Together, this dataset provides a resource for experimental and computational immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets

    Inter- and intraspecies comparison of phylogenetic fingerprints and sequence diversity of immunoglobulin variable genes

    No full text
    Protection and neutralization of a vast array of pathogens is accomplished by the tremendous diversity of the B cell receptor (BCR) repertoire. For jawed vertebrates, this diversity is initiated via the somatic recombination of immunoglobulin (Ig) germline elements. While it is clear that the number of these germline segments differs from species to species, the extent of cross-species sequence diversity remains largely uncharacterized. Here we use extensive computational and statistical methods to investigate the sequence diversity and evolutionary relationship between Ig variable (V), diversity (D), and joining (J) germline segments across nine commonly studied species ranging from zebrafish to human. Metrics such as guanine-cytosine (GC) content showed low redundancy across Ig germline genes within a given species. Other comparisons, including amino acid motifs, evolutionary selection, and sequence diversity, revealed species-specific properties. Additionally, we showed that the germline-encoded diversity differs across antibody (recombined V-D-J) repertoires of various B cell subsets. To facilitate future comparative immunogenomics analysis, we created VDJgermlines, an R package that contains the germline sequences from multiple species. Our study informs strategies for the humanization and engineering of therapeutic antibodies

    Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner

    Get PDF
    Barnstorf et al. demonstrate that chronic viral infections numerically reduce memory non–virus-specific (bystander) cytotoxic T lymphocytes and alter their phenotype and function. Phenotypic changes are induced by the inflammatory cytokine IL-6, and functional impairment is not cell-intrinsic but inferred by the chronically infected host

    Discovery and validation of human genomic safe harbor sites for gene and cell therapies

    No full text
    Existing approaches to therapeutic gene transfer are marred by the transient nature of gene expression following non-integrative gene delivery and by safety concerns due to the random mechanism of viral-mediated genomic insertions. The disadvantages of these methods encourage future research in identifying human genomic sites that allow for durable and safe expression of genes of interest. We conducted a bioinformatic search followed by the experimental characterization of human genomic sites, identifying two that demonstrated the stable expression of integrated reporter and therapeutic genes without malignant changes to the cellular transcriptome. The cell-type agnostic criteria used in our bioinformatic search suggest widescale applicability of identified sites for engineering of a diverse range of tissues for clinical and research purposes, including modified T cells for cancer therapy and engineered skin to ameliorate inherited diseases and aging. In addition, the stable and robust levels of gene expression from identified sites allow for the industry-scale biomanufacturing of proteins in human cells

    Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice

    No full text
    Neuroinflammation plays a crucial role during ageing and various neurological conditions, including Alzheimer's disease, multiple sclerosis and infection. Technical limitations, however, have prevented an integrative analysis of how lymphocyte immune receptor repertoires and their accompanying transcriptional states change with age in the central nervous system. Here, we leveraged single-cell sequencing to simultaneously profile B cell receptor and T cell receptor repertoires and accompanying gene expression profiles in young and old mouse brains. We observed the presence of clonally expanded B and T cells in the central nervous system of aged male mice. Furthermore, many of these B cells were of the IgM and IgD isotypes, and had low levels of somatic hypermutation. Integrating gene expression information additionally revealed distinct transcriptional profiles of these clonally expanded lymphocytes. Our findings implicate that clonally related T and B cells in the CNS of elderly mice may contribute to neuroinflammation accompanying homeostatic ageing

    immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking

    No full text
    Abstract Summary B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full-length variable region immune receptor sequences by tuning the following immune receptor features: (i) species and chain type (BCR, TCR, single and paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis, such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis and machine learning methods for motif detection. Availability and implementation The package is available via https://github.com/GreiffLab/immuneSIM and on CRAN at https://cran.r-project.org/web/packages/immuneSIM. The documentation is hosted at https://immuneSIM.readthedocs.io. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online

    IgM Antibody Repertoire Fingerprints in Mice Are Personalized but Robust to Viral Infection Status

    No full text
    Antibody repertoire sequencing provides a molecular fingerprint of current and past pathogens encountered by the immune system. Most repertoire studies in humans require measuring the B cell response in the blood, resulting in a large bias to the IgM isotype. The extent to which the circulating IgM antibody repertoire correlates to lymphoid tissue-resident B cells in the setting of viral infection remains largely uncharacterized. Therefore, we compared the IgM repertoires from both blood and bone marrow (BM) plasma cells (PCs) following acute or chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Despite previously reported serum alterations between acute and chronic infection, IgM repertoire signatures based on clonal diversity metrics, public clones, network, and phylogenetic analysis were largely unable to distinguish infection cohorts. Our findings, however, revealed mouse-specific repertoire fingerprints between the blood and PC repertoires irrespective of infection status.ISSN:2235-298

    immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking

    No full text
    B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full length variable region immune receptor sequences. ImmuneSIM enables the tuning of the immune receptor features: (i) species and chain type (BCR, TCR, single, paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation, and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis, and machine learning methods for motif detection
    corecore