7 research outputs found

    Review Article: Molecular Beam Epitaxy of Lattice-Matched InAlAs and InGaAs Layers on InP (111)A, (111)B, and (110)

    Get PDF
    For more than 50 years, research into IIIā€“V compound semiconductors has focused almost exclusively on materials grown on (001)-oriented substrates. In part, this is due to the relative ease with which IIIā€“Vs can be grown on (001) surfaces. However, in recent years, a number of key technologies have emerged that could be realized, or vastly improved, by the ability to also grow high-quality IIIā€“Vs on (111)- or (110)-oriented substrates These applications include: next-generation field-effect transistors, novel quantum dots, entangled photon emitters, spintronics, topological insulators, and transition metal dichalcogenides. The first purpose of this paper is to present a comprehensive review of the literature concerning growth by molecular beam epitaxy (MBE) of IIIā€“Vs on (111) and (110) substrates. The second is to describe our recent experimental findings on the growth, morphology, electrical, and optical properties of layers grown on non-(001) InP wafers. Taking InP(111)A, InP(111)B, and InP(110) substrates in turn, the authors systematically discuss growth of both In0.52Al0.48As and In0.53Ga0.47As on these surfaces. For each material system, the authors identify the main challenges for growth, and the key growth parameterā€“property relationships, trends, and interdependencies. The authors conclude with a section summarizing the MBE conditions needed to optimize the structural, optical and electrical properties of GaAs, InAlAs and InGaAs grown with (111) and (110) orientations. In most cases, the MBE growth parameters the authors recommend will enable the reader to grow high-quality material on these increasingly important non-(001) surfaces, paving the way for exciting technological advances

    Bulk AlInAs on InP(111) as a novel material system for pure single photon emission

    Get PDF
    In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk Al0:48In0:52As (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band kā€¢p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescence spectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 meV. We demonstrate the capability of this new material system to act as an emitter of pure single photons as we extract g(2)-values as low as g(2)/cw (0) = 0:05+0:17/-0:05 for continuous wave (cw) excitation and g (2) pulsed, corr. = 0:24 Ā± 0:02 for pulsed excitation.PostprintPeer reviewe

    Effect of NH3 flow rate on m-plane GaN growth on m-plane SiC by metalorganic chemical vapor deposition

    No full text
    This paper reports a study of the effect of NH3 flow rate on m-plane GaN growth on m-plane SiC with an AlN buffer layer. It is found that a reduced NH3 flow rate during m-plane GaN growth can greatly improve the recovery of in situ optical reflectance and the surface morphology, and narrow down the on-axis (1 0 1̄ 0) X-ray rocking curve (XRC) measured along the in-plane a-axis. The surface striation along the in-plane a-axis, a result of GaN island coalescence along the in-plane c-axis, strongly depends on the NH3 flow rate, an observation consistent with our recent study of kinetic Wulff plots. The pronounced broadening of the (1 0 1̄ 0) XRC measured along the c-axis is attributed to the limited lateral coherence length of GaN domains along the c-axis, due to the presence of a high density of basal-plane stacking faults, most of which are formed at the GaN/AlN interface, according to transmission electron microscopy.close111

    Bulk AlInAs on InP(111) as a novel material system for pure single photon emission

    No full text
    In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk Al0:48In0:52As (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band kā€¢p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescencespectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 meV. We demonstrate the capability of this new material system to act as an emitter of pure single photons as we extract g(2)-values as low as g(2)/cw (0) = 0:05+0:17/-0:05 for continuous wave (cw) excitation andg (2) pulsed, corr. = 0:24 Ā± 0:02 for pulsed excitation.<br/

    Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain

    No full text
    Self-assembled quantum dots (SAQDs) grown under biaxial tension could enable novel devices by taking advantage of the strong band gap reduction induced by tensile strain. Tensile SAQDs with low optical transition energies could find application in the technologically important area of mid-infrared optoelectronics. In the case of Ge, biaxial tension can even cause a highly desirable crossover from an indirect- to a direct-gap band structure. However, the inability to grow tensile SAQDs without dislocations has impeded progress in these directions. In this article, we demonstrate a method to grow dislocation-free, tensile SAQDs by employing the unique strain relief mechanisms of (110)-oriented surfaces. As a model system, we show that tensile GaAs SAQDs form spontaneously, controllably, and without dislocations on InAlAs(110) surfaces. The tensile strain reduces the band gap in GaAs SAQDs by āˆ¼40%, leading to robust type-I quantum confinement and photoluminescence at energies lower than that of bulk GaAs. This method can be extended to other zinc blende and diamond cubic materials to form novel optoelectronic devices based on tensile SAQDs
    corecore