7 research outputs found

    Assessing water circularity in cities: Methodological framework with a case study

    Get PDF
    With significant efforts made to consider water reuse in cities, a robust and replicable framework is needed to quantify the degree of urban water circularity and its impacts from a systems perspective. A quantitative urban water circularity framework can benchmark the progress and compare the impacts of water circularity policies across cities. In that pursuit, we bring together concepts of resource circularity and material flow analysis (MFA) to develop a demand- and discharge-driven water circularity assessment framework for cities. The framework integrates anthropogenic water flow data based on the water demand in an urban system and treated wastewater discharge for primary water demand substitution. Leveraging the water mass balance, we apply the framework in evaluating the state of water circularity in Singapore from 2015 to 2019. Overall, water circularity has been steadily increasing, with 24.9% of total water demand fulfilled by secondary flows in 2019, potentially reaching 39.6% at maximum water recycling capacity. Finally, we discuss the wider implications of water circularity assessments for energy, the environment, and urban water infrastructure and policy. Overall, this study provides a quantitative tool to assess the scale of water circularity within engineered urban water infrastructure and its application to develop macro-level water systems planning and policy insights

    Activation of H+-ATPase of the Plasma Membrane of Saccharomyces cerevisiae by Glucose: The Role of Sphingolipid and Lateral Enzyme Mobility

    Get PDF
    Activation of the plasma membrane H+-ATPase of the yeast Saccharomyces cerevisiae by glucose is a complex process that has not yet been completely elucidated. This study aimed to shed light on the role of lipids and the lateral mobility of the enzyme complex during its activation by glucose. The significance of H+-ATPase oligomerization for the activation of H+-ATPase by glucose was shown using the strains lcb1-100 and erg6, with the disturbed synthesis of sphyngolipid and ergosterol, respectively. Experiments with GFP-fused H+-ATPase showed a decrease in fluorescence anisotropy during the course of glucose activation, suggesting structural reorganization of the molecular domains. An immunogold assay showed that the incubation with glucose results in the spatial redistribution of ATPase complexes in the plasma membrane. The data suggest that (1) to be activated by glucose, H+-ATPase is supposed to be in an oligomeric state, and (2) glucose activation is accompanied by the spatial movements of H+-ATPase clusters in the PM

    Glycerol-3-phosphate acyltransferase 2 expression modulates cell roughness and membrane permeability: An atomic force microscopy study.

    Get PDF
    In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology

    Psychosocial correlates of body image and body change behaviors among Malaysian adolescent boys and girls

    Full text link
    This study used a psychosocial framework to investigate the relationships between BMI, body dissatisfaction, body change behaviors and mental health/behavioral problems amongst a sample of 513 Malay, Indian and Chinese adolescent boys and girls in Malaysia who completed questionnaires assessing these variables. Expected gender differences were not found in relation to body dissatisfaction or engagement in strategies to increase weight, but boys reported greater engagement in strategies to increase muscles. Relationships between body dissatisfaction and engagement in body change behaviors and mental health/behavioral problems varied across race and gender. These findings suggest that the psychosocial framework is a useful way to conceptualise body dissatisfaction and related behaviors, and that caution should be exercised in generalising findings across gender and culture.<br /
    corecore