47 research outputs found

    A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e

    Get PDF
    Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNAmediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes

    A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e

    Get PDF
    Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNAmediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes

    Effect of Multiple Quantum Well Periods on Structural Properties and Performance of Extended Short-Wavelength Infrared LEDs

    Get PDF
    We present research on the role of multiple quantum well periods in extended short-wavelength infrared InGaAs/InAsPSb type-I LEDs. The fabricated LEDs consisted of 6, 15, and 30 quantum well periods, and we evaluated the structural properties and device performance through a combination of theoretical simulations and experimental characterization. The strain and energy band offset was precisely controlled by carefully adjusting the composition of the InAsPSb quaternary material, achieving high valence and conduction band offsets of 350 meV and 94 meV, respectively. Our LEDs demonstrated a high degree of relaxation of 94-96 %. Additionally, we discovered that the temperature-dependent dark current characterization attributed to generation-recombination and trap-assign tunneling, with trap-assign tunneling being more dominant at lower current injections. Electroluminescence analysis revealed that the predominant emission mechanism of the LEDs originated from localized exciton and free exciton radiative recombination, which the 30 quantum wells LED exhibited the highest contribution of the localized exciton/free exciton radiative recombination. We observed that increasing the quantum well periods from 6 to 15 led to an increase in the 300 K electroluminescence intensity of the LED. However, extending the quantum well period to 30 resulted in a decline in emission intensity due to the degradation of the epitaxial film quality

    Extracorporeal cardiopulmonary resuscitation for adult out-of-hospital cardiac arrest patients: time-dependent propensity score-sequential matching analysis from a nationwide population-based registry

    Get PDF
    Background There is inconclusive evidence regarding the effectiveness of extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest (OHCA) patients. We aimed to evaluate the association between ECPR and neurologic recovery in OHCA patients using time-dependent propensity score matching analysis. Methods Using a nationwide OHCA registry, adult medical OHCA patients who underwent CPR at the emergency department between 2013 and 2020 were included. The primary outcome was a good neurological recovery at discharge. Time-dependent propensity score matching was used to match patients who received ECPR to those at risk for ECPR within the same time interval. Risk ratios (RRs) and 95% confidence intervals (CIs) were estimated, and stratified analysis by the timing of ECPR was also performed. Results Among 118,391 eligible patients, 484 received ECPR. After 1:4 time-dependent propensity score matching, 458 patients in the ECPR group and 1832 patients in the no ECPR group were included in the matched cohort. In the matched cohort, ECPR was not associated with good neurological recovery (10.3% in ECPR and 6.9% in no ECPR; RR [95% CI] 1.28 [0.85–1.93]). In the stratified analyses according to the timing of matching, ECPR with a pump-on within 45min after emergency department arrival was associated with favourable neurological outcomes (RR [95% CI] 2.51 [1.33–4.75] in 1–30min, 1.81 [1.11–2.93] in 31–45min, 1.07 (0.56–2.04) in 46–60min, and 0.45 (0.11–1.91) in over 60min). Conclusions ECPR itself was not associated with good neurological recovery, but early ECPR was positively associated with good neurological recovery. Research on how to perform ECPR at an early stage and clinical trials to evaluate the effect of ECPR is warranted

    Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway

    Get PDF
    Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.Peer reviewe

    Understanding and Engineering Algal Lipid Metabolism in Chlamydomonas reinhardtii

    No full text
    Recent research has focused on understanding and using microalgal metabolic pathways to produce triacylglycerol (TAG), the biodiesel precursor. However, our current knowledge on microalgal lipid metabolism is primarily limited in predictive models without experimental verification. Here I describe three projects that broaden our understanding of microalgal lipid biology. First, we investigated a mechanism of TAG biosynthesis in microalgae. TAGs in Chlamydomonas reinhardtii, a model green microalga, predominantly have 16 carbon fatty acids (C16) at the sn-2 position. According to plant lipid biochemistry, lysophosphatidic acid acyltransferases (LPAATs) in chloroplasts prefer C16 to acylate the sn-2 position of glycerolipids, and LPAATs in the endoplasmic reticulum (ER) prefer C18. This information led to a postulation that TAGs in C. reinhardtii came from the chloroplast. However, researchers have not reported the delivery of TAG from plastids to the ER. We found an enzyme called CrLPAAT2 in the C. reinhardtii proteome database. This enzyme exists only in green microalgal species, localized in the ER, preferentially used C16 fatty, and played an important role in TAG accumulation. Second, we aimed to engineer microalgal metabolism to accumulate lipids (biodiesel precursors) in fast-growing conditions without growth retardation. Using C. reinhardtii, we simultaneously overexpressed genes encoding a pyruvate transporter (BASS1), a fatty acid thioesterase (FAT1), a glycerol-3- phosphate dehydrogenase (GPD2), and a pyruvate kinase (PYK5), which presumably rerouted pyruvate and glycerol-3-phosphate to lipid metabolism. The overexpressing strains achieved less protein content (0.8-fold) and higher quantities of total biomass (1.3- fold) and molecules including starch (2.2-fold), various small carbon molecules, and plastid lipids such as monogalactosyldiacylglycerol (MGDG, 1.4-fold), free fatty acids (FFAs, fold-change various to each FFA) and phytol (1.9-fold). However, total lipid content did not change. Third, we investigated the function of the phosphatase-fused glycerol-3-phosphate dehydrogenase (GPD2) in C. reinhardtii. I predicted two catalytically essential aspartates in the phosphatase domain. I also found that GPD2 participates in the biosynthesis of most glycerolipids. In addition, our phylogenetic analysis suggests that GPD2 have derived from gene duplication and fusion at the early evolution of eukaryotes. In conclusion, we provided the experimental evidence on the microalgal TAG biosynthetic pathway and lipid metabolic engineering

    Optimal Load Shedding for Maximizing Satisfaction in an Islanded Microgrid

    No full text
    A microgrid (MG) is a discrete energy system that can operate either in parallel with or independently from a main power grid. It is designed to enhance reliability, carbon emission reduction, diversification of energy sources, and cost reduction. When a power fault occurs in a grid, an MG operates in an islanded manner from the grid and protects its power generations and loads from disturbance by means of intelligent load shedding. A load shedding is a control procedure that results in autonomous decrease of the power demands of loads in an MG. In this study, we propose a load shedding algorithm for the optimization problem to maximize the satisfaction of system components. The proposed algorithm preferentially assigns the power to the subdemand with a high preference to maximize the satisfaction of power consumers. In addition, the algorithm assigns the power to maximize the power sale and minimize the power surplus for satisfaction of power suppliers. To verify the performance of our algorithm, we implement a multi-agent system (MAS) on top of a conventional development framework and assess the algorithm’s adaptability, satisfaction metric, and running time
    corecore