30 research outputs found

    Plant growth promotion and Penicillium citrinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of <it>Ixeris repenes </it>(L.) A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi.</p> <p>Results</p> <p>We isolated 15 endophytic fungi from the roots of <it>Ixeris repenes </it>and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and <it>Atriplex gemelinii </it>seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA<sub>1</sub>, GA<sub>3</sub>, GA<sub>4 </sub>and GA<sub>7 </sub>(1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively) along with other physiologically inactive GA<sub>5</sub>, GA<sub>9</sub>, GA<sub>12</sub>, GA<sub>15</sub>, GA<sub>19</sub>, GA<sub>20 </sub>and, GA<sub>24</sub>. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type <it>Gibberella fujikuroi</it>, which was taken as control during present study. GA<sub>5</sub>, a precursor of bioactive GA<sub>3 </sub>was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of <it>Penicillium citrinum </it>(named as <it>P. citrinum </it>KACC43900) through phylogenetic analysis of 18S rDNA sequence.</p> <p>Conclusion</p> <p>Isolation of new strain of <it>Penicillium citrinum </it>from the sand dune flora is interesting as information on the presence of <it>Pencillium </it>species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. <it>Penicillium citrinum </it>is already known for producing mycotoxin citrinin and cellulose digesting enzymes like cellulase and endoglucanase, as well as xylulase. Gibberellins producing ability of this fungus and the discovery about the presence of GA<sub>5 </sub>will open new aspects of research and investigations.</p

    Functional role of aspartic proteinase cathepsin D in insect metamorphosis

    Get PDF
    BACKGROUND: Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. RESULTS: Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. CONCLUSION: Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis

    Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals

    No full text
    The purpose of this study is to search for effective dopants and their optimal combinations to improve the electrocatalytic activity of the SnO 2 electrode for the remediation of aqueous pollutants. For this purpose, Sb was selected as the primary dopant for SnO 2 and six elements (Fe(III), Ni(II), Co(II), Ru(III), Ce(III), and Pd(II)) were also introduced into the optimized Sb-SnO 2 electrodes. The electrodes were checked for their electrochemical properties at different doping levels and tested for their electrocatalytic activities for the degradation of phenol and Eosin Y. In addition, RNO (N,N-dimethyl-p-nitrosoaniline) was used as a probe molecule for OH radicals to examine the reaction mechanism occurring at the electrodes. Sb with a 5-10at.% was most effective in making SnO 2 an electrocatalyst and Ni (∼1%) enhanced the degradation rate and TOC removal rate of phenol at the Sb-SnO 2 anode by a factor of 14 and 8, respectively. Fe also increased the activity moderately. Enhanced Ni-Sb-SnO 2 activity was also found for Eosin Y. The other co-dopants exhibited various degrees of positive or negative effects depending on the substrate. The lack of a correlation in the kinetics between substrate degradation and the RNO changes indicated that the primary electrocatalytic reactions may proceed via direct electron transfer and/or organic peroxy radical-mediation, not OH radical-mediation. Detailed analyses of the electrode surfaces (SEM, TEM, XRD, and XPS) and quantification of intermediates were carried out to obtain insight into the heterogeneous electrocatalytic reaction. © 2011 Elsevier B.V.

    Morphology, Palynology and Molecular Phylogeny of <i>Barleria cristata</i> L. (Acanthaceae) Morphotypes from India

    No full text
    Barleria cristata L., commonly known as the Philippine violet, is native to South Asia. It is an ornamental plant and is also used for the treatment of a variety of diseases. In India, it is found throughout the country in many forms, varying in its floral attributes (calyx and corolla) and habitat. In order to understand the species limits in B. cristata, we studied morphological as well as palynological variation and assessed the phylogenetic relationships among five different morphotypes. The studied morphotypes (populations) came from three phytogeographical regions, namely the Western Ghats, the Deccan Peninsula and the Western Himalaya. The naturally occurring populations from the Deccan Peninsula and the Western Himalaya showed conspicuous differences in their morphology. All the morphotypes had oblate spheroidal, tri-brevicolporate and honey-combed pollen grains which differed only in their quantitative parameters. The distinct-looking morphotypes, namely, Nandi Hills, Uttarakhand and cultivated morphotypes, could not be separated based on pollen characters. Phylogenetic analyses based on chloroplast DNA sequences revealed that our samples formed a clade sister to the B. cristata specimen used in the previous study. The genetic variation within morphotypes was not enough for the genomic regions investigated; however, it revealed among morphotype genealogies in detail. Phylogenetic analyses showed that there were three monophyletic groups within the B. cristata complex that exhibited some morphological differences. Nevertheless, based on the present sampling, it is not possible to delimit these morphotypes at specific or infraspecific level. To reach such conclusions, further investigations like sampling this species across its distribution range in India and assessment of intraspecific relationships, and their cytogenetical characterization should be done

    Molecular Phylogenetic Evidence and Biogeographic History of Indian Endemic Portulaca L. (Portulacaceae) Species

    No full text
    The genus Portulaca L. belongs to the monogeneric family Portulacaceae and consists of about 157 species worldwide. In India, it is represented by 11 taxa; among them, Portulaca badamica, Portulaca lakshminarasimhaniana, Portulaca oleracea var. linearifolia, and Portulaca laljii are endemic. So far, the phylogenetic positions of these species have not yet been analyzed. We have reconstructed the Bayesian and maximum likelihood phylogenies based on a combined chloroplast and nuclear DNA sequence dataset to reveal phylogenetic placements of Indian Portulaca. Phylogenetic analyses indicate that all the sampled Indian Portulaca species (except Portulaca wightiana) are placed in the AL clade, which contains most of the known species of the family Portulacaceae. We used reconstructed phylogeny to study the historical biogeography of Indian endemic species by employing S-DIVA analysis. S-DIVA analysis suggested P. lakshminarasimhaniana has origin in India, it may be the result of in situ speciation in India, and P. badamica was dispersed from Africa to India. We have also discussed the systematic placements of endemic species and their morphological relationships with closely allied species. In addition, this study also provides taxonomic treatment for endemic species

    Cytogenetics, Typification, Molecular Phylogeny and Biogeography of <i>Bentinckia</i> (Arecoideae, Arecaceae), an Unplaced Indian Endemic Palm from Areceae

    No full text
    Bentinckia is a genus of flowering plants which is an unplaced member of the tribe Areceae (Arecaceae). Two species are recognized in the genus, viz. B. condapanna Berry ex Roxb. from the Western Ghats, India, and B. nicobarica (Kurz) Becc. from the Nicobar Islands. This work constitutes taxonomic revision, cytogenetics, molecular phylogeny, and biogeography of the Indian endemic palm genus Bentinckia. The present study discusses the ecology, morphology, taxonomic history, distribution, conservation status, and uses of Bentinckia. A neotype was designated for the name B. condapanna. Cytogenetical studies revealed a new cytotype of B. condapanna representing 2n = 30 chromosomes. Although many phylogenetic reports of the tribe Areceae are available, the relationship within the tribe is still ambiguous. To resolve this, we carried out Bayesian Inference (BI) and Maximum Likelihood (ML) analysis using an appropriate combination of chloroplast and nuclear DNA regions. The same phylogeny was used to study the evolutionary history of Areceae. Phylogenetic analysis revealed that Bentinckia forms a clade with other unplaced members, Clinostigma and Cyrostachys, and together they show a sister relationship with the subtribe Arecinae. Biogeographic analysis shows Bentinckia might have originated in Eurasia and India

    Dual Function of a Bee Venom Serine Protease: Prophenoloxidase-Activating Factor in Arthropods and Fibrin(ogen)olytic Enzyme in Mammals

    Get PDF
    Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles for Bi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee veno

    Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

    No full text
    AbstractRegulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two–dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes

    Endogenous Gibberellins in Bulbils of Chinese Yam during Growth and Storage

    No full text
    Five gibberellins in the early-13-hydroxylation pathway (GA53, GA44, GA19, GA20 and GA1), and six gibberellins in the non-13-hydroxylation pathway (GA12, GA15, GA24, GA9, GA36 and GA4), were detected in the bulbils of Chinese yam. This indicated the presence of two gibberellin biosynthetic pathways in bulbils. The total endogenous gibberellins were dramatically increased in enlarged bulbils. The endogenous level of bioactive GA4 was always higher than that of GA1. A rapid increase in endogenous gibberellins including bioactive GA4 was observed during a 30-day storage period. These results show that gibberellins are closely related to bulbil enlargement and dormancy in Chinese yam plants. However, further research is needed for better understanding of the fluctuation of gibberellin levels in bulbils of Chinese yam during storage
    corecore