1,136 research outputs found
The causal structure of dynamical charged black holes
We study the causal structure of dynamical charged black holes, with a
sufficient number of massless fields, using numerical simulations. Neglecting
Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature
singularity due to mass inflation. When we include Hawking radiation, the inner
horizon becomes space-like and is separated from the Cauchy horizon, which is
parallel to the out-going null direction. Since a charged black hole must
eventually transit to a neutral black hole, we studied the neutralization of
the black hole and observed that the inner horizon evolves into a space-like
singularity, generating a Cauchy horizon which is parallel to the in-going null
direction. Since the mass function is finite around the inner horizon, the
inner horizon is regular and penetrable in a general relativistic sense.
However, since the curvature functions become trans-Planckian, we cannot
saymore about the region beyond the inner horizon, and it is natural to say
that there is a 'physical' space-like singularity. However, if we assume an
exponentially large number of massless scalar fields, our results can be
extended beyond the inner horizon. In this case, strong cosmic censorship and
black hole complementarity can be violated.Comment: 23 pages, 23 figure
Collecting and organizing the influencing factors of team communications to handle nuclear power plant emergencies
A nuclear power plant (NPP), as a complex safety-critical system, requires qualified operators working in teams. Interactions between operators in the main control room (MCR) team are important to ensure safe operation. Since communication is the basis of the operators’ interactions, team communication is a significant factor affecting teamwork performance. Especially during NPP emergencies, poor team communication may lead to incorrect decisions and countermeasures, causing deterioration toward accidents. Moreover, in an emergency situation, emergency response teams are assembled. This multi-team and critical work condition further emphasizes the need for effective and accurate team communication. We collected the factors influencing team communication in NPP emergencies using a literature review combined with text mining. Our method for extracting the influencing factors consists of four steps; then, by applying topic modeling from text mining, we complemented the influencing factors. The resulting list of influencing factors of team communications for handling NPP emergencies is organized into five elements: individual, team, communication, NPP tasks, and external elements. Discussions on the team communication model, applicability, communication errors, and emergency response teams are also presented
Spherically symmetric trapping horizons, the Misner-Sharp mass and black hole evaporation
Understood in terms of pure states evolving into mixed states, the
possibility of information loss in black holes is closely related to the global
causal structure of spacetime, as is the existence of event horizons. However,
black holes need not be defined by event horizons, and in fact we argue that in
order to have a fully unitary evolution for black holes, they should be defined
in terms of something else, such as a trapping horizon. The Misner-Sharp mass
in spherical symmetry shows very simply how trapping horizons can give rise to
black hole thermodynamics, Hawking radiation and singularities. We show how the
Misner-Sharp mass can also be used to give insights into the process of
collapse and evaporation of locally defined black holes.Comment: 9 pages, 10 figure
No-boundary measure and preference for large e-foldings in multi-field inflation
The no-boundary wave function of quantum gravity usually assigns only very
small probability to long periods of inflation. This was a reason to doubt
about the no-boundary wave function to explain the observational universe. We
study the no-boundary proposal in the context of multi-field inflation to see
whether the number of fields changes the situation. For a simple model, we find
that indeed the no-boundary wave function can give higher probability for
sufficient inflation, but the number of fields involved has to be very high.Comment: 16 pages, 2 figure
Dynamics of false vacuum bubbles: beyond the thin shell approximation
We numerically study the dynamics of false vacuum bubbles which are inside an
almost flat background; we assumed spherical symmetry and the size of the
bubble is smaller than the size of the background horizon. According to the
thin shell approximation and the null energy condition, if the bubble is
outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven
tunneling, expanding and inflating solutions are impossible. In this paper, we
extend our method to beyond the thin shell approximation: we include the
dynamics of fields and assume that the transition layer between a true vacuum
and a false vacuum has non-zero thickness. If a shell has sufficiently low
energy, as expected from the thin shell approximation, it collapses (Type 1).
However, if the shell has sufficiently large energy, it tends to expand. Here,
via the field dynamics, field values of inside of the shell slowly roll down to
the true vacuum and hence the shell does not inflate (Type 2). If we add
sufficient exotic matters to regularize the curvature near the shell, inflation
may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a
wormhole is dynamically generated around the shell (Type 3). By tuning our
simulation parameters, we could find transitions between Type 1 and Type 2, as
well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find
another class of solutions (Type 4). Finally, we discuss the generation of a
bubble universe and the violation of unitarity. We conclude that the existence
of a certain combination of exotic matter fields violates unitarity.Comment: 40 pages, 41 figure
Stress relief as the driving force for self-assembled Bi nanolines
Stress resulting from mismatch between a substrate and an adsorbed material
has often been thought to be the driving force for the self-assembly of
nanoscale structures. Bi nanolines self-assemble on Si(001), and are remarkable
for their straightness and length -- they are often more than 400 nm long, and
a kink in a nanoline has never been observed. Through electronic structure
calculations, we have found an energetically favourable structure for these
nanolines that agrees with our scanning tunneling microscopy and photoemission
experiments; the structure has an extremely unusual subsurface structure,
comprising a double core of 7-membered rings of silicon. Our proposed structure
explains all the observed features of the nanolines, and shows that surface
stress resulting from the mismatch between the Bi and the Si substrate are
responsible for their self-assembly. This has wider implications for the
controlled growth of nanostructures on semiconductor surfaces.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Discontinuity Detection for Analysis of Telerobot Trajectories
To identify spatial and temporal discontinuities in telerobot movement in order to describe the shift in operators control and error correction strategies from continuous control to move-and-wait strategies. This shift was studied under conditions of simulated increasingly time-delayed teleoperation. The ultimate goal is to determine if the time delay associated with the shift is invariant with independently imposed control difficulty. We expect this shift to manifest itself as changes in the number of discontinuity of movement path. We proposed an approach to spatial and temporal discontinuity detection algorithm for analysis of teleoperated trajectory in three dimensional space. The algorithm provides a simple and potentially objective method for detecting the discontinuity during telerobot operation and evaluating the difficulty of rotational coordinate condition in teleoperation
Dynamical formation and evolution of (2+1)-dimensional charged black holes
In this paper, we investigate the dynamical formation and evolution of 2 +
1-dimensional charged black holes. We numerically study dynamical collapses of
charged matter fields in an anti de Sitter background and note the formation of
black holes using the double-null formalism. Moreover, we include re-normalized
energy-momentum tensors assuming the S-wave approximation to determine
thermodynamical back-reactions to the internal structures. If there is no
semi-classical effects, the amount of charge determines the causal structures.
If the charge is sufficiently small, the causal structure has a space-like
singularity. However, as the charge increases, an inner Cauchy horizon appears.
If we have sufficient charge, we see a space-like outer horizon and a time-like
inner horizon, and if we give excessive charge, black hole horizons disappear.
We have some circumstantial evidences that weak cosmic censorship is still
satisfied, even for such excessive charge cases. Also, we confirm that there is
mass inflation along the inner horizon, although the properties are quite
different from those of four-dimensional cases. Semi-classical back-reactions
will not affect the outer horizon, but they will affect the inner horizon. Near
the center, there is a place where negative energy is concentrated. Thus,
charged black holes in three dimensions have two types of curvature
singularities in general: via mass inflation and via a concentration of
negative energy. Finally, we classify possible causal structures.Comment: 40 pages, 15 figure
- …