1,644 research outputs found

    DINeR: Database for Insect Neuropeptide Research

    Get PDF
    Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardized nomenclature to address inconsistent classification of neuropeptides

    Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures

    Full text link
    We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.Comment: 8 pages, 5 figure

    EML4-ALK variants: biological and molecular properties, and the implications for patients

    Get PDF
    Since the discovery of the fusion between EML4 (echinoderm microtubule associated protein-like 4) and ALK (anaplastic lymphoma kinase), EML4-ALK, in lung adenocarcinomas in 2007, and the subsequent identification of at least 15 different variants in lung cancers, there has been a revolution in molecular-targeted therapy that has transformed the outlook for these patients. Our recent focus has been on understanding how and why the expression of particular variants can affect biological and molecular properties of cancer cells, as well as identifying the key signalling pathways triggered, as a result. In the clinical setting, this understanding led to the discovery that the type of variant influences the response of patients to ALK therapy. Here, we discuss what we know so far about the EML4-ALK variants in molecular signalling pathways and what questions remain to be answered. In the longer term, this analysis may uncover ways to specifically treat patients for a better outcome

    The journey of Zika to the developing brain

    Get PDF
    Zika virus is a mosquito-borne Flavivirus originally isolated from humans in 1952. Following its re-emergence in Brazil in 2015, an increase in the number of babies born with microcephaly to infected mothers was observed. Microcephaly is a neurodevelopmental disorder, characterised phenotypically by a smaller than average head size, and is usually developed in utero. The 2015 outbreak in the Americas led to the World Health Organisation declaring Zika a Public Health Emergency of International Concern. Since then, much research into the effects of Zika has been carried out. Studies have investigated the structure of the virus, its effects on and evasion of the immune response, cellular entry including target receptors, its transmission from infected mother to foetus and its cellular targets. This review discusses current knowledge and novel research into these areas, in hope of developing a further understanding of how exposure of pregnant women to the Zika virus can lead to impaired brain development of their foetus. Although no longer considered an epidemic in the Americas, the mechanism by which Zika acts is still not comprehensively and wholly understood, and this understanding will be crucial in developing effective vaccines and treatments

    Experimental and numerical analysis of low-density gas dispersion characteristics in semi-confined environments

    Full text link
    Hydrogen, as a clean fuel, offers a practical pathway to achieve net-zero targets. However, due to its physical and chemical characteristics, there are some safety concerns for large-scale hydrogen utilisation, particularly in process safety management. Leakage of gaseous hydrogen, especially in semi-confined spaces such as tunnels, can lead to catastrophic outcomes including uncontrolled fire and explosion. The current paper describes the outcome of an experimental and numerical study that aims to understand the dispersion of leaked light gas in a semi-confined space to support the adoption of hydrogen. A dispersion chamber with dimensions of 4m Ă— 0.3m Ă— 0.3m was constructed to investigate a baseline gas leakage scenario. To reduce the risk of the experiment in the laboratory, helium is utilised as a surrogate for hydrogen. Computational fluid dynamics simulations are conducted using FLACS-CFD to model the dispersion of leaked gas in different scenarios focusing on the impact of the ventilation velocity, leakage rate, and slope. The results from comprehensive numerical simulations show that ventilation is a critical safety management measure that can significantly reduce the growth of flammable clouds and mitigate the fire and explosion risk. Even with the lowest ventilation velocity of 0.25 m/s, an improvement in the gas concentration level of 29.34% can be achieved in the downstream chamber. The current results will help to further enhance the understanding of hydrogen safety aspects

    Lupus and the Lungs: The Assessment and Management of Pulmonary Manifestations of Systemic Lupus Erythematosus

    Get PDF
    Pulmonary manifestations of systemic lupus erythematosus (SLE) are wide-ranging and debilitating in nature. Previous studies suggest that anywhere between 20 and 90% of patients with SLE will be troubled by some form of respiratory involvement throughout the course of their disease. This can include disorders of the lung parenchyma (such as interstitial lung disease and acute pneumonitis), pleura (resulting in pleurisy and pleural effusion), and pulmonary vasculature [including pulmonary arterial hypertension (PAH), pulmonary embolic disease, and pulmonary vasculitis], whilst shrinking lung syndrome is a rare complication of the disease. Furthermore, the risks of respiratory infection (which often mimic acute pulmonary manifestations of SLE) are increased by the immunosuppressive treatment that is routinely used in the management of lupus. Although these conditions commonly present with a combination of dyspnea, cough and chest pain, it is important to consider that some patients may be asymptomatic with the only suggestion of the respiratory disorder being found incidentally on thoracic imaging or pulmonary function tests. Treatment decisions are often based upon evidence from case reports or small cases series given the paucity of clinical trial data specifically focused on pulmonary manifestations of SLE. Many therapeutic options are often initiated based on studies in severe manifestations of SLE affecting other organ systems or from experience drawn from the use of these therapeutics in the pulmonary manifestations of other systemic autoimmune rheumatic diseases. In this review, we describe the key features of the pulmonary manifestations of SLE and approaches to investigation and management in clinical practice

    Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping

    Get PDF
    A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size, and nanoinclusions induced by C incorporation and low-temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2

    Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Get PDF
    This study presents the numerical fluid-structure interaction (FSI) modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i) discussion of the current state of the art of modelling FSI in gas turbine engines and (ii) development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip
    • …
    corecore