157 research outputs found

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.

    Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin

    Full text link
    The incipient separation induced by the shock wave turbulent boundary layer interaction at the sharp fin is the subject of present study. Existing theories for the prediction of incipient separation, such as those put forward by McCabe (1966) and Dou and Deng (1992), can have thus far only predicting the direction of surface streamline and tend to over-predict the incipient separation condition based on the Stanbrook's criterion. In this paper, the incipient separation is firstly predicted with Dou and Deng (1992)'s theory and then compared with Lu and Settles (1990)' experimental data. The physical mechanism of the incipient separation as induced by the shock wave/turbulent boundary layer interactions at sharp fin is explained via the surface flow pattern analysis. Furthermore, the reason for the observed discrepancy between the predicted and experimental incipient separation conditions is clarified. It is found that when the wall limiting streamlines behind the shock wave becomes\ aligning with one ray from the virtual origin as the strength of shock wave increases, the incipient separation line is formed at which the wall limiting streamline becomes perpendicular to the local pressure gradient. The formation of this incipient separation line is the beginning of the separation process. The effects of Reynolds number and the Mach number on incipient separation are also discussed. Finally, a correlation for the correction of the incipient separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure

    A two-component pre-seeded dermal-epidermal scaffold

    Get PDF
    We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children's Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIR Ruth L. Kirschstein National Research Service Award (F32GM096546)

    GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma

    Get PDF
    Background: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.Tessa Gargett, Lisa M Ebert, Nga T H Truong, Paris M Kollis, Kristyna Sedivakova, Wenbo Yu, Erica C F Yeo, Nicole L Wittwer, Briony L Gliddon, Melinda N Tea, Rebecca Ormsby, Santosh Poonnoose, Jake Nowicki, Orazio Vittorio, David S Ziegler, Stuart M Pitson, Michael P Brow

    Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities

    Get PDF
    The intensification of farming practices, along with the loss and fragmentation of semi-natural habitats within agricultural areas, has contributed significantly to insect decline worldwide including flower-visiting aculeate Hymenoptera. In this study aculeate Hymenoptera were collected using bi-directional Malaise traps placed along farmland linear habitats across a range of farming intensities. The aim was to further our understanding of the value of farmland linear habitats to this insect group and in particular the Vespinae, an understudied subfamily. Overall, significantly greater aculeate Hymenoptera species richness was found on extensive than on intermediate and intensive farms. Significantly more species and specimens were collected on the side of the traps adjacent to the linear habitats compared to the side which opened onto the fields. Aculeate Hymenoptera species richness was also significantly greater in dense hedgerows than in open hedgerows. Furthermore, two out of six Vespinae species, Vespula rufa and Vespula vulgaris, had significantly more individuals on extensive than intensive farms. This study highlights that low-intensity farming practices and farmland linear habitats, especially dense hedgerows, may enhance aculeate Hymenoptera occurrence in agricultural areas. It also demonstrates that Malaise traps set up along linear habitats across a range of farming intensities can make a significant contribution to knowledge regarding the biodiversity value of such areas. Given that selected Vespinae species follow similar trends to aculeate Hymenoptera, the possibility of using them as simple biodiversity indicators is worthy of further exploration.© 2019 The Royal Entomological Societ

    Constraints on simplified dark matter models involving an s-channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

    Get PDF

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Precise measurements of W- and Z-boson transverse momentum spectra with the ATLAS detector using pp collisions at t √s = 5.02 TeV and 13 TeV

    Get PDF
    corecore